

1

Planning as a Service: A Plan Repository Model Inspired by
Cloud Computing

Khawaja Shams1, Paul Wolgast2, David Mittman3, Tom Soderstrom4
NASA Jet Propulsion Laboratory, Pasadena, CA, USA

Arash Aghevli5, Alfredo Bencomo6, Ivy Deliz7,
NASA Ames Research Center, Moffett Field, CA, USA

and

Marc Spicer8
NASA Johnson Space Center, Houston, TX, USA

The Ensemble project has consistently identified common patterns pertaining to activity
planning across missions, analogs, and field tests. In this process, we have developed a unified
planning repository that serves Mars Science Laboratory, International Space Station, Analog
Field tests like Pavilion Lake Research Project, and many others. This repository encapsulates
complexities associated with persistence, indexing, access and synchronization of data required
for distributed planning. By providing a uniform Restful interface to the clients, the plan
repository enables access from a variety of clients spanning multiple NASA centers. These
clients range from shell scripts and browsers to mobile apps and complex desktop applications.
It supports multiple representations, or formats, of plans to support multiple clients. With a
focus on interoperability, end-users from disparate clients are able to interact with each other
seamlessly. With support for rich querying capabilities through an inverted index of all of the
activities and plans stored in the repository, we allow operators and scientists to search for the
plans based on tactically relevant criteria with structured and unstructured (full-text) queries.
Lastly, in order to support distributed planning, the repository incorporates a messaging layer
to synchronize plans across multiple geographically dispersed clients in real-time. In this paper,
we describe common patterns in tactical planning and the feature sets we have built to support
them. Furthermore, we share key insights and lessons learned from deploying plan repository
on a variety of missions and field tests. We provide an overview of the novel integration of
technologies that support planning repository, and we discuss the role of cloud computing in
our deployment strategy. We conclude with an overview of future research and upcoming
features in the plan repository.

1 Manager, Data Services – Planning and Execution Section, M/S 301-250D. Jet Propulsion Laboratory, California
Institute of Technology Jet Propulsion Lab, Pasadena, CA
2 Member of Section Staff – Planning and Execution Section. Jet Propulsion Laboratory, California Institute of
Technology. M/S 301-250D Jet Propulsion Lab, Pasadena, CA
3 Manager, Software Systems – Planning and Execution Section. Jet Propulsion Laboratory, California Institute of
Technology. M/S 301-250D Jet Propulsion Lab, Pasadena, CA
4 Chief Technology Officer – OCIO. Jet Propulsion Laboratory, California Institute of Technology. M/S 180-300
Jet Propulsion Lab, Pasadena, CA
5 Software Engineer - Planning and Scheduling Group. SGT / Code TI. NASA Ames Research Center, Moffett
Field, CA 94035- Mail stop: 262-4.
6 Software Engineer - Planning and Scheduling Group. SGT / Code TI. NASA Ames Research Center, Moffett
Field, CA 94035- Mail stop: 269-3.
7 Software Engineer - Department: Code TH. Dell Federal Government. NASA Ames Research Center Moffett
Field, CA 94035- Mail stop: 262-4.
8, NGPS Project Manager. ISS Operations Planner. Johnson Space Center. 2101 NASA Parkway #1. Houston, TX
77058.

2

I. Introduction
loud computing has redefined the development paradigms employed across the industry and catalyzed an
unprecedented level of innovation in many diverse areas. Cloud vendors, like Amazon Web Services,

Microsoft, and Google are able to inject this productivity into the community by providing the fundamental building
blocks required for a diverse set of novel applications spanning multiple industries. Multiple missions across NASA
have already started utilizing these building blocks and have deployed applications in the cloud. In November 2010,
Mars Exploration Rovers (MER) became the first NASA mission to place a mission critical component in the cloud.
Today, all activity plans for MER are stored on Amazon S3 (Simple Storage Service) and indexed in Amazon’s
SimpleDB. Since 2010, MER has enjoyed 100% availability for their plans, improved the durability, and
significantly enhanced the performance of the application. This application previously required a MySQL database,
an Apache Server, and a web application server, all maintained in-house. However, Ensemble developers quickly
realized that they are able to deliver a transactional persistence layer with hosted services that do not have to be
maintained. Meanwhile, MER is also using similar building blocks like Amazon SWF (Simple Workflow Service)
to orchestrate data migration, backups, and data processing in the cloud.

 While these platforms provide building blocks for numerous applications, the Ensemble project is striving to
define and develop Software As A Service (SaaS) capabilities for planning applications. We aim to streamline
delivery of planning applications by minimizing overhead associated with design, development, deployment, and
maintenance of these applications. We envision enabling missions to dynamically provision components of a
sophisticated planning system with the core capabilities available. Specifically, after making specific design choices,
missions should be able to get a functional system deployed and ready for customization beyond core capabilities
within minutes. While cloud computing enables us to rapidly provision raw infrastructure, we have gone a step
further by creating custom capabilities to enhance the provisioned resources with planning software, configure
security, isolate instances, and to make the capacity available to the missions. Towards that end, we have
preconfigured machine images that provide persistence, indexing, and messaging layers for planning systems. We
will continue this development until the entire planning system can be deployed in this fashion.

 The NASA Jet Propulsion Laboratory is aggressively investigating the cloud computing options available for
missions planning and other applications. With a compelling partnership between the missions and IT, JPL
personnel have developed a Cloud Applicability Suitability Model (CASM) that guides selection of a particular
cloud based on application specific requirements. JPL currently has production applications deployed in Google App
Engine (GAE), Microsoft Azure and Amazon Web Services. For instance, BeAM (Be A Martian), a public outreach
website dedicated to exploration of Mars, is currently deployed on Microsoft Azure. We are also investigating
hybrid cloud deployments and are currently investigating Eucalyptus, OpenStack, and other options to leverage
cloud-based innovations for our in-house infrastructure.

 We have validated the integration of our system with the development environment for the Next Generation
Planning Systems (NGPS) initiative for the International Space Station (ISS), MSL (Mars Science Laboratory) and
MER missions. NGPS is a suite of planning tools being developed as a collaboration between Johnson Space Center
(JSC), Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) which will address planning needs for
both ISS and future Mission Operations Directive (MOD) missions. Score is the planning interface to be used by
NASA, the European Space Agency (ESA), and the Japan Aerospace Exploration Agency (JAXA) for authoring the
operations schedule and validating it against flight rules and constraints. Score also provides an interface for
planning collaboration between remote planners as well as a plugin-based architecture for partners from Marshall
Space and Flight Center (MSFC), ESA, and JAXA to contribute their own custom tools.

 The Ensemble Project, a highly successful, ongoing collaboration among NASA Centers has supported the
development of mission operations software for NASA’s Explorations Systems, Science and Space Operations
Directorates. Ensemble is designed as an open architecture for the development, integration, and deployment of
ground data system mission operations software. Fundamentally, it is an adaptation of the Eclipse Rich Client
Platform (RCP), a widespread, stable, and supported framework for component-based application development. The
Ensemble Project has been instrumental in the development of NGPS, ISS, MSL and MER operations software.

 This current approach to the development of mission operations software has produced a set of powerful tools
that have enabled successes for numerous NASA missions. Many parts of the current development process are

C

3

functioning well and should be preserved. However, improvements in the state of the art in software engineering and
increasing demands from new missions have exposed several areas that deserve attention, including: difficult to test
interfaces, lack of user interface design standardization, difficult to integrate software systems, duplication of
functionality across tools and overall lack of agility in structuring and delivering new tools. The Ensemble project
emphasizes: the use of direct application interfaces over network or file interfaces; a unified cross-platform approach
to user interface elements and window management; ease of integration with standard development tooling and
infrastructure; and reuse of software components throughout the operations process with a component-based
software model.

Ensemble is enabling NASA missions to derive greater results from their investment in mission operations

software. Instead of stringing together a series of largely isolated and independent tools, missions are free to
assemble precisely the tools they need by drawing components together from different development teams. Mission
operators become more efficient, which improves the overall performance of their missions. Finally, operations
software developers are free to focus more on developing great tools and less on frustrating integration issues.

II. Core Planning Capabilities
Planning complex systems brings about sophisticated challenges. NASA missions are increasingly becoming

more distributed; the Mars Science Laboratory operations team consists of a global community of scientists,
operators, and experts. Distributed planning, therefore, is a crucial component in maintaining the collective
situational awareness throughout the missions. Within the domain of long term planning, the Ensemble team has
had experience supporting operations of numerous missions like Cassini, MER, Phoenix, and ISS. Perhaps the
biggest success of the project has been the reuse of code across multiple missions through a modular design of our
applications. This paper focuses on server-side components and capabilities that formulate a planning system. By
identifying these components, we are able to focus on enhancing components across the multiple missions we
concurrently support. This section outlines the common components and the diverse options we have tried across
our missions.

A. Plan Persistence Platform
Throughout the years, Ensemble has supported numerous projects with unique persistence requirements. For

instance, some projects like ISS require versioning on the persistence layer, while others only desire the latest
version of the plan to be stored. On the other hand, while MSL and ISS require full-text search capabilities across
the entire plan, MER only asked for the ability to search over metadata (plan name, number of activities, custodians,
etc) rather than low level searching over activity names or parameters. We currently support three persistence layers:
raw file system, serialized object storage, and Subversion (SVN), a source code version control system.

Plan storage on the file system provides access to the mission operators through a Restful interface, as well as

through raw file system access. Privacy and integrity of the data are enforced via POSIX permissions on the file
system, and via LDAP integration on the Rest interface. The storage of these plans in a hierarchical file system also
affords a natural Restful URI scheme for CRUD (Create, Read, Update, Delete) operations on the plan. To ensure
durability of the plan files, traditional file system backup approaches are utilized, and there is no routine health-
checks for the integrity and consistency of these files. While this is a simple and elegant solution, there are several
problems this approach for a mission with complex planning requirements. First of all, the file system does not
automatically provide search capabilities that a database would provide. Hence, an index of the files must be
maintained. Although that is true for most approaches, it is increasingly difficult to maintain consistency between
the file on the file system and the index. This is because the users are able to go around the server and modify files
on the file systems. Without a polling and crawling capabilities built into the server, it is untenable to keep track of
such changes on a large-scale file system. Furthermore, the crawling introduces a lag in the consistency between the
index and the file system. The second problem with the file system is the lack of versioning support for the files.
Once an operator saves a plan, it overwrites the previous copy of the plan. This shortcoming makes it difficult to
support auditability and visualization of the changes in the plan over the course of the planning cycle. Furthermore,
it makes it nearly impossible to recover from unintentional writes. Despite these shortcomings, this approach works
well for several missions that can tolerate eventual consistency in the indexing for out-of-band changes and do not
require versioning of the plans that are stored over time. MSL and numerous Analog tests have used this approach to
provide a simple, streamlined, and high performing solution to their planners, without too many additional features.

4

Object-based storage of plans offers Restful access to plans in a highly durable environment with automated

integrity checks, and automated replication across multiple data centers. In this approach, plan data are serialized
and stored as blobs in a distributed object store and we are able to leverage Amazon S3 as the persistence layer.
Once the plan is persisted in the object store as a blob, S3 replicates the files across multiple, physically disjoint,
data centers. S3 is designed for 11 9’s of durability, which means that if we had a million files stored in S3, we can
expect to lose a file once every ten thousand years. In terms of availability, S3 can tolerate concurrent loss of up to
two data centers, and still provide access to the data while maintaining durability. While some missions have
expressed discomfort in entrusting the availability, integrity, and durability in the hands of a third party entity, MER
has enjoyed the benefits, while minimizing risk for this approach. Object-based storage of the plan enables us to
persist the data in the cloud in an encrypted format, while never introducing the key into the cloud. This minimizes
the level of trust we place on the vendor in terms of the privacy and integrity of the data, while leveraging the
research that the cloud vendors have put in place for deploying highly available and durable storage systems.
Operationally, this approach also minimizes maintenance overhead that the mission has to deal with: there are no
systems or machines that we are responsible for running. This approach shares a few of the shortcomings of the raw
file system approach. First, even if the changes to the plan are minimal, the whole plan must be sent over and
overwritten. Because S3 currently does not support append semantics, it is impossible to make the system efficient
by transmitting small deltas. S3 does, however, offer native support for versioning, giving missions option to
automatically store multiple copies of the plan and retrieve historical copies. The second problem with this approach
is that it does not provide native indexing of the files. Hence, we have to build the indexing layer on top. However,
unlike the native file system approach, all access to S3 goes through Ensemble software. Thus, we are able to update
the index whenever we change a plan, minimizing the synchronization issues between the persisted data and the
index. This approach has successfully met the persistence requirement for MER, and it offers the lowest operational
overhead and minimal cost for running a plan persistence layer. It is also the option with the highest durability and
availability.

For missions that have strict versioning requirements and desire to optimize transfers, we have used version
control systems like Git* and SVN as the persistence layer. Since Ensemble tools are based on Eclipse, we have
access to the numerous Eclipse features for version control systems like the views for browsing and comparison, as
well as low level tools for the servers and clients to directly interact with the SVN layer for checking out and
committing plans. SVN provides multiple options for maintaining consistency between the persistence and indexing
layers. We first attempted to use SVN hooks to notify the servers whenever a change is committed. However, due to
the lack of reliability of this approach, we have evolved our approach to employ a polling solution that repeated asks
the repository for the latest revision. A plan is fully re-indexed upon detection of any changes in a specific plan. This
approach requires setup, integration, and monitoring of an Apache server for interaction with SVN or Git for remote
clients. The requirement for an additional service makes this approach slightly less desirable, but the native support
for versioning, coupled with tooling, make a versioning-based persistence layer very appealing for missions.
Currently, the Next Generation Planning System (NGPS) repository for ISS and for several analog field tests is
based on this approach.

We have found these three approaches to be sufficient in addressing the requirements for a diverse set of mission

that Ensemble sponsors. Furthermore, based on our experience with persistence layers, Ensemble developers are
able to quickly analyze requirements for a mission, and recommend a functional persistence layer with an existing
codebase. Furthermore, the persistence layer is completely modular in Ensemble’s case, which allows missions to
cost-effectively change the persistence layer as the requirements mature. In the case of ISS, we quickly migrated
from raw file system storage to the version control-based persistence layer, while only affecting the code base for
the persistence layer and minimizing the scope of our changes.

B. Search and Indexing Platform

During tactical operations, it is crucial to provide operators and scientists with the ability to quickly search for
plans that meet specific criteria. For some missions, these queries are predictable and can be indexed in a database.
However, the majority of our missions require deep introspection into plans down to the level of activity parameters.

* http://git-scm.com/

5

For missions with low functionality requirements and a-priori knowledge of the metadata they wish to search
upon, we have typically been able to store this information in a database. In the case of MER, we store all the
metadata for the plan that the scientists typically search on into Amazon SimpleDB. SimpleDB allows us to delegate
the responsibility of maintaining a highly available and highly durable indexing layer to Amazon Web Services
team, while requiring only tens of milliseconds in query response time for some of our largest planning databases.
SimpleDB also offers conditional puts that allow us to persist plans only if certain criteria are met – thus giving us
transactional functionality plan persistence. This approach requires us to store metadata in the cloud in clear text,
and it requires the mission to predict the kinds of queries operators would conduct at the time of development of the
code. However, it enables our clients to query the metadata and obtain plans without requiring NASA to maintain a
single service. The cost is very economical – for MER’s plan persistence and querying functionality, the mission
ends up spending on the order of a few dollars each month – which is significantly less than running even a single
low-end machine. Meanwhile, it gives MER elastic performance that scales with demand during the peak traffic
hours.

Most NASA missions require deep full-text searching over all tactically relevant data, including plans, images,

and even low level sequences. We extensively leverage Apache Lucene to construct an inverted index of tactical
data and to provide fast searching over any of the attributes of the plans. We wrap this capability in a server that can
contextualize plans and index relevant portions as they are persisted. The server provides a Restful querying
interface that clients, written in any modern language, can interact with and obtain results from. The server supports
polling and file system crawling capabilities to detect changes in files after they have been persisted. Today, the
Lucene based indexing and searching approach is employed by MSL, ISS, and all analog field tests supported by
NGPS.

C. Messaging and Synchronization Layer

Due to the distributed nature of the planning applications, it is important to keep information synchronized
between users. Ensemble developers have created a server component to support collaborative editing by
maintaining the state of the plans across multiple heterogeneous client applications. Furthermore, a robust
messaging layer is also a crucial component in synchronizing state between multiple servers behind a load balancer.
Therefore, our generalized messaging layer services both clients and servers. Within Ensemble, we have evaluated
XMPP, Redis (a Node.js component), and polling.

We first started with XMPP due to the perceived simplicity. We use OpenFire as our XMPP layer – as it is

mature, has a large community, and is fully developed in Java. Our messaging layer treats chat rooms as a per plan
collaboration session. To debug the interactions between the clients, a developer can simply use their favorite jabber
client to log in to the server and join the chat room. Users can also inject their own messages and watch the client
react in a debugger. With XMPP, we experienced several connectivity issues, even for machines on a reliable
network. While we can use jabber clients to determine the current members of the chat rooms and diagnose
connectivity issues, the code base for XMPP clients is fairly complex. To keep our connections alive over extended
periods, we broadcast heartbeats on the chat room. If a client does not hear any heartbeats for a several minutes, it
disconnects and automatically rejoins the room. XMPP is engineered for large-scale installations and may be
overkill for many of our projects that have membership rates on the order of dozens of users. The planning servers
on MSL currently use XMPP to synchronize state with each other. However, the project is eagerly waiting for other
projects to come up with new solutions that are simpler and can be plugged into MSL for the next major delivery.

Score, the planning client used for ISS and analog fields tests utilizes a collaboration server to maintain state

between all the clients. Score relies on SVN as the persistence layer. Score initially started with XMPP as a
messaging layer for the collaboration server as well. Figure 1 shows the original workflow of the system based upon
an XMPP implementation. Like MSL, Score developers quickly learned that this is a complex approach for our use
case, adds deployment overhead, and has tough low-level debugging. Score developers are also actively working on
web and mobile interfaces, and the lack of a reliable and native XMPP client in JavaScript made the approach even
less appealing. Fortunately, Score is in an earlier phase of development and is able to evaluate alternatives that can
be directly fed back to other users of the messaging layer.

6

Figure 1. The ISS Planning System High Level View (XMPP variant)

We have prototyped a new messaging layer based on Redis as the message broker. Redis is a lightweight, highly

performing, key-value store, with extensions to support queues and publish subscribe mechanisms. This approach is
appealing for many reasons. First, we are able to connect clients in many different languages directly to Redis.
Specifically, we use jedis to connect our java clients and our java servers to the Redis server and to subscribe to
channels for messages. To support the JavaScript clients, we have a simple node.js script that connects JavaScript
clients to the Redis channels through socket.io. Figure 2 provides an overview of this architecture. While it offers a
lightweight and simple solution that supports all of our clients, Redis deployment requires us to open up two
additional ports on our servers: one for Redis, and one for the Node.js server. We are currently investigating ways to
simplify the deployment in a production environment.

Figure 2. The ISS Planning System High Level View (Node.js/Redis variant)

The simplest solution relies on polling the collaboration server for changes. This approach obviates external

servers and extra ports at the cost of latency and additional development on the clients to support the polling. It
supports browser clients as well as clients written in any modern language. Furthermore, it minimizes concerns
about clients disconnecting under unreliable networking conditions and dropping messages. To minimize latency
concerns, we are currently working on a solution that augments the polling clients with a real time notification
scheme based on the Redis publish-subscribe mechanism. In this hybrid approach, the clients would poll on a
regular interval, but if they receive a message, they will poll immediately.

7

Figure 3. The ISS Planning System High Level View (Polling variant)

III. Planning Components as A Service

D. Virtual Machine Images

Leveraging advances in virtualization, cloud computing provides tools that significantly streamline the
deployment process for applications. One of these great tools is virtual machine images – or AMI (Amazon Machine
Images) as they are typically known in popular public and private cloud environments. In a cloud environment,
developers can configure a machine, install necessary software, and create a snapshot of the fully configured
machine into an AMI. An AMI can be instantiated on-demand into as many machines as desired, delivering a
seamless process to replicate production, staging, and development environments.

As part of our research and development, we have used cloud resources extensively to support the multiple

development machines needed to build our products and test them. Within these research environments, we
generated a set of base images that contain the planning components described above. Our catalog of images include
pre-configured images for persistence, messaging, and search indexing layers – and they streamline the process for
an Ensemble project to test a new approach for one of our key components. An image is not tied to a particular
physical machine or the size of the machine. Once an image is created, a project can chose to run it on a larger
machine based on real-time requirements. Furthermore, for project that are employing load balancing capabilities,
these images also facilitate horizontal scaling by allowing projects to instantiate as many copies of the image as
needed.

E. Automated Build Deployment Services
Ensemble employs continuous integration as a core technique in agile software development. Given that

Ensemble’s source repository is shared with several hundred developers and dozens of products, it is crucial for us
to exercise any committed changes against any product they affect. Unit tests are encouraged in the ecosystem, as
they are a great tool in detecting when a commit violates any assumptions developers may have made previously or
if a bug has been introduced. Towards that end, we extensively utilize Atlassian Bamboo to automate software
builds, unit test execution and in some cases, deployments to production environments.

Within Bamboo, we have created a deployment scheme for our projects that wish to develop with the latest

development of the server. For instance, whenever any source file impacting our server for the ISS or analog tests
are committed into our code repository, Bamboo kicks of a build, runs unit tests, and if the unit tests pass, it deploys
the latest build into a development server environment.

We are currently working on a deployment scheme that runs multiple builds of the server concurrently to enable

efficient debugging if the developers experience a regression in the code. In this scheme, we would have a stable
server with code that has been graduated after proving maturity in the development environment, as well as a
development server that is fully synced with the repository’s latest commits. We are also working on a web interface
that will allow developers to deploy a particular version of the server on a new machine. Upon a developer’s request,

8

we would provision a new machine, push our server on it, configure the security groups, and deploy the server, and
provide the developer with the IP address of the machine. We believe this capability will enable client-side and
server-side developers to quickly integrate with working copies of the server, and it will also help us push out
production servers to be used in analog field tests.

IV. Conclusion

This paper covers the component-driven development scheme within Ensemble for Planning Software that
allows us to provide “Planning as a Service” capabilities to our projects. New missions using Ensemble can
construct their planning system with components that best match their requirements, and they can rapidly prototype
their systems through Ensemble’s collection of AMIs as well as complementary code for each approach. This
capability creates an ecosystem where components can continuously evolve independently across projects, with
innovation in each area flowing across the missions. Our extensive use of cloud computing enables us to deploy our
system in real-time, and it significantly reduces the costs associated with prototyping a new capability. We are
quickly moving towards the provisioning of an entire planning system, from tactical downlink data processing,
indexing, data delivery, planning, and synchronization with a click of a few buttons.

Acknowledgments
We would like to thank the SPIFe team at NASA Ames Research Center for their tireless development efforts

towards the research described in this paper. Specifically, we thank Melisa Ludowise, Michael McCurdy, Guy
Pyrzak, and Sam Hashemi. We would also like to thank members of the Operations Planning Software Lab,
including Megan Mickelson and Tony Valderama for their contributions in our research. Part of this research was
carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

References

[1] Michael Armbrust et al. Above the Clouds: A Berkeley View of Cloud computing. Technical Report No. UCB/EECS-2009- 28,
University of California at Berkley, USA, Feb. 10, 2009
[2] Khawaja S Shams, Dr. Mark W. Powell, Dr. Jeffrey S. Norris, Tom Crockett, Tom Soderstrom. “Cloud Sourcing Cycles: How Cloud
Computing is Revolutionizing NASA Mission Operations,” AIAA Spaceops 2010.
[3] Mark Powell, Thomas M. Crockett, Jason M. Fox, Joseph Joswig, Jeffrey S. Norris, Khawaja Shams, Recaredo Jay Torres,
“Delivering Images for Mars Rover Science Planning,” IEEE Aerospace 2008.
[4] Eclipse Equinox (2010 February). Equinox. Available: http://www.eclipse.org/equinox/
[5] AWS (2012 May). Amazon Web Services. Available: http://aws.amazon.com
[6] AWS S3 (2012 April). Amazon Simple Storage Service. Available: http://aws.amazon.com/s3
[7] AWS SQS (2012 March). Amazon Simple Queuing Service. Available: http://aws.amazon.com/sqs/
[8] AWS SWF (2012 May). Amazon Simple Workflow Service. Available: http://aws.amazon.com/swf/
[9] The Ensemble Project, “The Ensemble Canon,” NASA SP-2011-597, 2011.

