
 

 
 

 
 

1 

Planning as a Service: A Plan Repository Model Inspired by 
Cloud Computing 

Khawaja Shams1, Paul Wolgast2, David Mittman3, Tom Soderstrom4 
NASA Jet Propulsion Laboratory, Pasadena, CA, USA 

Arash Aghevli5, Alfredo Bencomo6, Ivy Deliz7,  
NASA Ames Research Center, Moffett Field, CA, USA 

and 

Marc Spicer8 
NASA Johnson Space Center, Houston, TX, USA 

The Ensemble project has consistently identified common patterns pertaining to activity 
planning across missions, analogs, and field tests. In this process, we have developed a unified 
planning repository that serves Mars Science Laboratory, International Space Station, Analog 
Field tests like Pavilion Lake Research Project, and many others. This repository encapsulates 
complexities associated with persistence, indexing, access and synchronization of data required 
for distributed planning. By providing a uniform Restful interface to the clients, the plan 
repository enables access from a variety of clients spanning multiple NASA centers. These 
clients range from shell scripts and browsers to mobile apps and complex desktop applications. 
It supports multiple representations, or formats, of plans to support multiple clients.  With a 
focus on interoperability, end-users from disparate clients are able to interact with each other 
seamlessly. With support for rich querying capabilities through an inverted index of all of the 
activities and plans stored in the repository, we allow operators and scientists to search for the 
plans based on tactically relevant criteria with structured and unstructured (full-text) queries.  
Lastly, in order to support distributed planning, the repository incorporates a messaging layer 
to synchronize plans across multiple geographically dispersed clients in real-time. In this paper, 
we describe common patterns in tactical planning and the feature sets we have built to support 
them. Furthermore, we share key insights and lessons learned from deploying plan repository 
on a variety of missions and field tests. We provide an overview of the novel integration of 
technologies that support planning repository, and we discuss the role of cloud computing in 
our deployment strategy. We conclude with an overview of future research and upcoming 
features in the plan repository. 
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I. Introduction 
loud computing has redefined the development paradigms employed across the industry and catalyzed an 
unprecedented level of innovation in many diverse areas. Cloud vendors, like Amazon Web Services, 

Microsoft, and Google are able to inject this productivity into the community by providing the fundamental building 
blocks required for a diverse set of novel applications spanning multiple industries. Multiple missions across NASA 
have already started utilizing these building blocks and have deployed applications in the cloud. In November 2010, 
Mars Exploration Rovers (MER) became the first NASA mission to place a mission critical component in the cloud. 
Today, all activity plans for MER are stored on Amazon S3 (Simple Storage Service) and indexed in Amazon’s 
SimpleDB. Since 2010, MER has enjoyed 100% availability for their plans, improved the durability, and 
significantly enhanced the performance of the application. This application previously required a MySQL database, 
an Apache Server, and a web application server, all maintained in-house. However, Ensemble developers quickly 
realized that they are able to deliver a transactional persistence layer with hosted services that do not have to be 
maintained.  Meanwhile, MER is also using similar building blocks like Amazon SWF (Simple Workflow Service) 
to orchestrate data migration, backups, and data processing in the cloud.   
 
 While these platforms provide building blocks for numerous applications, the Ensemble project is striving to 
define and develop Software As A Service (SaaS) capabilities for planning applications. We aim to streamline 
delivery of planning applications by minimizing overhead associated with design, development, deployment, and 
maintenance of these applications. We envision enabling missions to dynamically provision components of a 
sophisticated planning system with the core capabilities available. Specifically, after making specific design choices, 
missions should be able to get a functional system deployed and ready for customization beyond core capabilities 
within minutes. While cloud computing enables us to rapidly provision raw infrastructure, we have gone a step 
further by creating custom capabilities to enhance the provisioned resources with planning software, configure 
security, isolate instances, and to make the capacity available to the missions. Towards that end, we have 
preconfigured machine images that provide persistence, indexing, and messaging layers for planning systems. We 
will continue this development until the entire planning system can be deployed in this fashion.  
 
 The NASA Jet Propulsion Laboratory is aggressively investigating the cloud computing options available for 
missions planning and other applications. With a compelling partnership between the missions and IT, JPL 
personnel have developed a Cloud Applicability Suitability Model (CASM) that guides selection of a particular 
cloud based on application specific requirements. JPL currently has production applications deployed in Google App 
Engine (GAE), Microsoft Azure and Amazon Web Services. For instance, BeAM (Be A Martian), a public outreach 
website dedicated to exploration of Mars, is currently deployed on Microsoft Azure. We are also investigating 
hybrid cloud deployments and are currently investigating Eucalyptus, OpenStack, and other options to leverage 
cloud-based innovations for our in-house infrastructure.  
 
 We have validated the integration of our system with the development environment for the Next Generation 
Planning Systems (NGPS) initiative for the International Space Station (ISS), MSL (Mars Science Laboratory) and 
MER missions. NGPS is a suite of planning tools being developed as a collaboration between Johnson Space Center 
(JSC), Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) which will address planning needs for 
both ISS and future Mission Operations Directive (MOD) missions.  Score is the planning interface to be used by 
NASA, the European Space Agency (ESA), and the Japan Aerospace Exploration Agency (JAXA) for authoring the 
operations schedule and validating it against flight rules and constraints. Score also provides an interface for 
planning collaboration between remote planners as well as a plugin-based architecture for partners from Marshall 
Space and Flight Center (MSFC), ESA, and JAXA to contribute their own custom tools. 
 
 The Ensemble Project, a highly successful, ongoing collaboration among NASA Centers has supported the 
development of mission operations software for NASA’s Explorations Systems, Science and Space Operations 
Directorates.  Ensemble is designed as an open architecture for the development, integration, and deployment of 
ground data system mission operations software. Fundamentally, it is an adaptation of the Eclipse Rich Client 
Platform (RCP), a widespread, stable, and supported framework for component-based application development.  The 
Ensemble Project has been instrumental in the development of NGPS, ISS, MSL and MER operations software. 

 
 This current approach to the development of mission operations software has produced a set of powerful tools 
that have enabled successes for numerous NASA missions. Many parts of the current development process are 
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functioning well and should be preserved. However, improvements in the state of the art in software engineering and 
increasing demands from new missions have exposed several areas that deserve attention, including: difficult to test 
interfaces, lack of user interface design standardization, difficult to integrate software systems, duplication of 
functionality across tools and overall lack of agility in structuring and delivering new tools. The Ensemble project 
emphasizes: the use of direct application interfaces over network or file interfaces; a unified cross-platform approach 
to user interface elements and window management; ease of integration with standard development tooling and 
infrastructure; and reuse of software components throughout the operations process with a component-based 
software model. 

 
Ensemble is enabling NASA missions to derive greater results from their investment in mission operations 

software. Instead of stringing together a series of largely isolated and independent tools, missions are free to 
assemble precisely the tools they need by drawing components together from different development teams. Mission 
operators become more efficient, which improves the overall performance of their missions. Finally, operations 
software developers are free to focus more on developing great tools and less on frustrating integration issues. 

II. Core Planning Capabilities 
Planning complex systems brings about sophisticated challenges. NASA missions are increasingly becoming 

more distributed; the Mars Science Laboratory operations team consists of a global community of scientists, 
operators, and experts. Distributed planning, therefore, is a crucial component in maintaining the collective 
situational awareness throughout the missions.  Within the domain of long term planning, the Ensemble team has 
had experience supporting operations of numerous missions like Cassini, MER, Phoenix, and ISS.  Perhaps the 
biggest success of the project has been the reuse of code across multiple missions through a modular design of our 
applications. This paper focuses on server-side components and capabilities that formulate a planning system. By 
identifying these components, we are able to focus on enhancing components across the multiple missions we 
concurrently support.  This section outlines the common components and the diverse options we have tried across 
our missions.  

 

A. Plan Persistence Platform 
Throughout the years, Ensemble has supported numerous projects with unique persistence requirements. For 

instance, some projects like ISS require versioning on the persistence layer, while others only desire the latest 
version of the plan to be stored. On the other hand, while MSL and ISS require full-text search capabilities across 
the entire plan, MER only asked for the ability to search over metadata (plan name, number of activities, custodians, 
etc) rather than low level searching over activity names or parameters. We currently support three persistence layers: 
raw file system, serialized object storage, and Subversion (SVN), a source code version control system.   

 
Plan storage on the file system provides access to the mission operators through a Restful interface, as well as 

through raw file system access. Privacy and integrity of the data are enforced via POSIX permissions on the file 
system, and via LDAP integration on the Rest interface. The storage of these plans in a hierarchical file system also 
affords a natural Restful URI scheme for CRUD (Create, Read, Update, Delete) operations on the plan. To ensure 
durability of the plan files, traditional file system backup approaches are utilized, and there is no routine health-
checks for the integrity and consistency of these files. While this is a simple and elegant solution, there are several 
problems this approach for a mission with complex planning requirements. First of all, the file system does not 
automatically provide search capabilities that a database would provide. Hence, an index of the files must be 
maintained. Although that is true for most approaches, it is increasingly difficult to maintain consistency between 
the file on the file system and the index. This is because the users are able to go around the server and modify files 
on the file systems. Without a polling and crawling capabilities built into the server, it is untenable to keep track of 
such changes on a large-scale file system. Furthermore, the crawling introduces a lag in the consistency between the 
index and the file system. The second problem with the file system is the lack of versioning support for the files. 
Once an operator saves a plan, it overwrites the previous copy of the plan. This shortcoming makes it difficult to 
support auditability and visualization of the changes in the plan over the course of the planning cycle. Furthermore, 
it makes it nearly impossible to recover from unintentional writes. Despite these shortcomings, this approach works 
well for several missions that can tolerate eventual consistency in the indexing for out-of-band changes and do not 
require versioning of the plans that are stored over time. MSL and numerous Analog tests have used this approach to 
provide a simple, streamlined, and high performing solution to their planners, without too many additional features.  
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Object-based storage of plans offers Restful access to plans in a highly durable environment with automated 

integrity checks, and automated replication across multiple data centers. In this approach, plan data are serialized 
and stored as blobs in a distributed object store and we are able to leverage Amazon S3 as the persistence layer. 
Once the plan is persisted in the object store as a blob, S3 replicates the files across multiple, physically disjoint, 
data centers. S3 is designed for 11 9’s of durability, which means that if we had a million files stored in S3, we can 
expect to lose a file once every ten thousand years. In terms of availability, S3 can tolerate concurrent loss of up to 
two data centers, and still provide access to the data while maintaining durability. While some missions have 
expressed discomfort in entrusting the availability, integrity, and durability in the hands of a third party entity, MER 
has enjoyed the benefits, while minimizing risk for this approach.  Object-based storage of the plan enables us to 
persist the data in the cloud in an encrypted format, while never introducing the key into the cloud. This minimizes 
the level of trust we place on the vendor in terms of the privacy and integrity of the data, while leveraging the 
research that the cloud vendors have put in place for deploying highly available and durable storage systems. 
Operationally, this approach also minimizes maintenance overhead that the mission has to deal with: there are no 
systems or machines that we are responsible for running. This approach shares a few of the shortcomings of the raw 
file system approach. First, even if the changes to the plan are minimal, the whole plan must be sent over and 
overwritten. Because S3 currently does not support append semantics, it is impossible to make the system efficient 
by transmitting small deltas. S3 does, however, offer native support for versioning, giving missions option to 
automatically store multiple copies of the plan and retrieve historical copies. The second problem with this approach 
is that it does not provide native indexing of the files. Hence, we have to build the indexing layer on top. However, 
unlike the native file system approach, all access to S3 goes through Ensemble software. Thus, we are able to update 
the index whenever we change a plan, minimizing the synchronization issues between the persisted data and the 
index. This approach has successfully met the persistence requirement for MER, and it offers the lowest operational 
overhead and minimal cost for running a plan persistence layer. It is also the option with the highest durability and 
availability.  
 

For missions that have strict versioning requirements and desire to optimize transfers, we have used version 
control systems like Git* and SVN as the persistence layer. Since Ensemble tools are based on Eclipse, we have 
access to the numerous Eclipse features for version control systems like the views for browsing and comparison, as 
well as low level tools for the servers and clients to directly interact with the SVN layer for checking out and 
committing plans.  SVN provides multiple options for maintaining consistency between the persistence and indexing 
layers. We first attempted to use SVN hooks to notify the servers whenever a change is committed. However, due to 
the lack of reliability of this approach, we have evolved our approach to employ a polling solution that repeated asks 
the repository for the latest revision. A plan is fully re-indexed upon detection of any changes in a specific plan. This 
approach requires setup, integration, and monitoring of an Apache server for interaction with SVN or Git for remote 
clients. The requirement for an additional service makes this approach slightly less desirable, but the native support 
for versioning, coupled with tooling, make a versioning-based persistence layer very appealing for missions. 
Currently, the Next Generation Planning System (NGPS) repository for ISS and for several analog field tests is 
based on this approach.  

 
We have found these three approaches to be sufficient in addressing the requirements for a diverse set of mission 

that Ensemble sponsors. Furthermore, based on our experience with persistence layers, Ensemble developers are 
able to quickly analyze requirements for a mission, and recommend a functional persistence layer with an existing 
codebase. Furthermore, the persistence layer is completely modular in Ensemble’s case, which allows missions to 
cost-effectively change the persistence layer as the requirements mature. In the case of ISS, we quickly migrated 
from raw file system storage to the version control-based persistence layer, while only affecting the code base for 
the persistence layer and minimizing the scope of our changes.  

B. Search and Indexing Platform 
 

During tactical operations, it is crucial to provide operators and scientists with the ability to quickly search for 
plans that meet specific criteria.  For some missions, these queries are predictable and can be indexed in a database. 
However, the majority of our missions require deep introspection into plans down to the level of activity parameters.   

 
                                                             
* http://git-scm.com/ 
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For missions with low functionality requirements and a-priori knowledge of the metadata they wish to search 
upon, we have typically been able to store this information in a database. In the case of MER, we store all the 
metadata for the plan that the scientists typically search on into Amazon SimpleDB. SimpleDB allows us to delegate 
the responsibility of maintaining a highly available and highly durable indexing layer to Amazon Web Services 
team, while requiring only tens of milliseconds in query response time for some of our largest planning databases. 
SimpleDB also offers conditional puts that allow us to persist plans only if certain criteria are met – thus giving us 
transactional functionality plan persistence. This approach requires us to store metadata in the cloud in clear text, 
and it requires the mission to predict the kinds of queries operators would conduct at the time of development of the 
code. However, it enables our clients to query the metadata and obtain plans without requiring NASA to maintain a 
single service.  The cost is very economical – for MER’s plan persistence and querying functionality, the mission 
ends up spending on the order of a few dollars each month – which is significantly less than running even a single 
low-end machine. Meanwhile, it gives MER elastic performance that scales with demand during the peak traffic 
hours.   

 
Most NASA missions require deep full-text searching over all tactically relevant data, including plans, images, 

and even low level sequences. We extensively leverage Apache Lucene to construct an inverted index of tactical 
data and to provide fast searching over any of the attributes of the plans. We wrap this capability in a server that can 
contextualize plans and index relevant portions as they are persisted. The server provides a Restful querying 
interface that clients, written in any modern language, can interact with and obtain results from. The server supports 
polling and file system crawling capabilities to detect changes in files after they have been persisted. Today, the 
Lucene based indexing and searching approach is employed by MSL, ISS, and all analog field tests supported by 
NGPS.  

C. Messaging and Synchronization Layer 
 

Due to the distributed nature of the planning applications, it is important to keep information synchronized 
between users.  Ensemble developers have created a server component to support collaborative editing by 
maintaining the state of the plans across multiple heterogeneous client applications. Furthermore, a robust 
messaging layer is also a crucial component in synchronizing state between multiple servers behind a load balancer. 
Therefore, our generalized messaging layer services both clients and servers. Within Ensemble, we have evaluated 
XMPP, Redis (a Node.js component), and polling.  

 
We first started with XMPP due to the perceived simplicity. We use OpenFire as our XMPP layer – as it is 

mature, has a large community, and is fully developed in Java. Our messaging layer treats chat rooms as a per plan 
collaboration session.  To debug the interactions between the clients, a developer can simply use their favorite jabber 
client to log in to the server and join the chat room. Users can also inject their own messages and watch the client 
react in a debugger.  With XMPP, we experienced several connectivity issues, even for machines on a reliable 
network. While we can use jabber clients to determine the current members of the chat rooms and diagnose 
connectivity issues, the code base for XMPP clients is fairly complex. To keep our connections alive over extended 
periods, we broadcast heartbeats on the chat room. If a client does not hear any heartbeats for a several minutes, it 
disconnects and automatically rejoins the room. XMPP is engineered for large-scale installations and may be 
overkill for many of our projects that have membership rates on the order of dozens of users. The planning servers 
on MSL currently use XMPP to synchronize state with each other. However, the project is eagerly waiting for other 
projects to come up with new solutions that are simpler and can be plugged into MSL for the next major delivery.  

 
Score, the planning client used for ISS and analog fields tests utilizes a collaboration server to maintain state 

between all the clients. Score relies on SVN as the persistence layer. Score initially started with XMPP as a 
messaging layer for the collaboration server as well. Figure 1 shows the original workflow of the system based upon 
an XMPP implementation.  Like MSL, Score developers quickly learned that this is a complex approach for our use 
case, adds deployment overhead, and has tough low-level debugging. Score developers are also actively working on 
web and mobile interfaces, and the lack of a reliable and native XMPP client in JavaScript made the approach even 
less appealing. Fortunately, Score is in an earlier phase of development and is able to evaluate alternatives that can 
be directly fed back to other users of the messaging layer.  
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Figure 1.  The ISS Planning System High Level View (XMPP variant) 
 
We have prototyped a new messaging layer based on Redis as the message broker. Redis is a lightweight, highly 

performing, key-value store, with extensions to support queues and publish subscribe mechanisms. This approach is 
appealing for many reasons. First, we are able to connect clients in many different languages directly to Redis. 
Specifically, we use jedis to connect our java clients and our java servers to the Redis server and to subscribe to 
channels for messages. To support the JavaScript clients, we have a simple node.js script that connects JavaScript 
clients to the Redis channels through socket.io. Figure 2 provides an overview of this architecture.  While it offers a 
lightweight and simple solution that supports all of our clients, Redis deployment requires us to open up two 
additional ports on our servers: one for Redis, and one for the Node.js server. We are currently investigating ways to 
simplify the deployment in a production environment.  

 

 
Figure 2. The ISS Planning System High Level View (Node.js/Redis variant) 

 
The simplest solution relies on polling the collaboration server for changes. This approach obviates external 

servers and extra ports at the cost of latency and additional development on the clients to support the polling. It 
supports browser clients as well as clients written in any modern language. Furthermore, it minimizes concerns 
about clients disconnecting under unreliable networking conditions and dropping messages. To minimize latency 
concerns, we are currently working on a solution that augments the polling clients with a real time notification 
scheme based on the Redis publish-subscribe mechanism. In this hybrid approach, the clients would poll on a 
regular interval, but if they receive a message, they will poll immediately.  
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Figure 3. The ISS Planning System High Level View (Polling variant) 

 

III. Planning Components as A Service 

D. Virtual Machine Images 
 

Leveraging advances in virtualization, cloud computing provides tools that significantly streamline the 
deployment process for applications. One of these great tools is virtual machine images – or AMI (Amazon Machine 
Images) as they are typically known in popular public and private cloud environments. In a cloud environment, 
developers can configure a machine, install necessary software, and create a snapshot of the fully configured 
machine into an AMI. An AMI can be instantiated on-demand into as many machines as desired, delivering a 
seamless process to replicate production, staging, and development environments.   

 
As part of our research and development, we have used cloud resources extensively to support the multiple 

development machines needed to build our  products and test them.  Within these research environments, we 
generated a set of base images that contain the planning components described above. Our catalog of images include 
pre-configured images for persistence, messaging, and search indexing layers – and they streamline the process for 
an Ensemble project to test a new approach for one of our key components. An image is not tied to a particular 
physical machine or the size of the machine. Once an image is created, a project can chose to run it on a larger 
machine based on real-time requirements. Furthermore, for project that are employing load balancing capabilities, 
these images also facilitate horizontal scaling by allowing projects to instantiate as many copies of the image as 
needed.  

E. Automated Build Deployment Services 
Ensemble employs continuous integration as a core technique in agile software development. Given that 

Ensemble’s source repository is shared with several hundred developers and dozens of products, it is crucial for us 
to exercise any committed changes against any product they affect. Unit tests are encouraged in the ecosystem, as 
they are a great tool in detecting when a commit violates any assumptions developers may have made previously or 
if a bug has been introduced. Towards that end, we extensively utilize Atlassian Bamboo to automate software 
builds, unit test execution and in some cases, deployments to production environments. 

 
Within Bamboo, we have created a deployment scheme for our projects that wish to develop with the latest 

development of the server. For instance, whenever any source file impacting our server for the ISS or analog tests 
are committed into our code repository, Bamboo kicks of a build, runs unit tests, and if the unit tests pass, it deploys 
the latest build into a development server environment.  

 
We are currently working on a deployment scheme that runs multiple builds of the server concurrently to enable 

efficient debugging if the developers experience a regression in the code. In this scheme, we would have a stable 
server with code that has been graduated after proving maturity in the development environment, as well as a 
development server that is fully synced with the repository’s latest commits. We are also working on a web interface 
that will allow developers to deploy a particular version of the server on a new machine. Upon a developer’s request, 
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we would provision a new machine, push our server on it, configure the security groups, and deploy the server, and 
provide the developer with the IP address of the machine. We believe this capability will enable client-side and 
server-side developers to quickly integrate with working copies of the server, and it will also help us push out 
production servers to be used in analog field tests.  
 

IV. Conclusion 
 

This paper covers the component-driven development scheme within Ensemble for Planning Software that 
allows us to provide “Planning as a Service” capabilities to our projects. New missions using Ensemble can 
construct their planning system with components that best match their requirements, and they can rapidly prototype 
their systems through Ensemble’s collection of AMIs as well as complementary code for each approach. This 
capability creates an ecosystem where components can continuously evolve independently across projects, with 
innovation in each area flowing across the missions. Our extensive use of cloud computing enables us to deploy our 
system in real-time, and it significantly reduces the costs associated with prototyping a new capability. We are 
quickly moving towards the provisioning of an entire planning system, from tactical downlink data processing, 
indexing, data delivery, planning, and synchronization with a click of a few buttons. 
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