
Flexible Data Processing with Plug-In Enabled Tools

George C. Leussis1

Northrop Grumman, Cambridge, MA, 02138

In today's space operations environment, processing
requirements evolve rapidly. Changing data transport
formats frequently requires significant alterations to
ground processing software simply to get data into the
system. Further, end users may desire output not
envisioned by the systems designers. I will show how
these problems can be solved by applying the concept of
plug-ins. A plug-in is small software component that acts
on the data in independent stages and can communicate
with the system as a whole by passing signals, or API-
defined data structures called “messages”. A plug-in can
also communicate with other plug-ins using either
signals, messages, or their own shared structures. Plug-
ins utilize the system's API to either provide input to, or
output from the system. They can access the entire data
stream or be restricted to a subset. They can work in
concert with the database or completely ignore the
system's definitions to perform processing not previously
thought necessary.

I. Introduction
rior to launch, the Chandra Ground Operations Team decided it needed a way to
analyze certain aspects of the telemetry data stream. As a result, the Telemetry

Controller's Toolkit (Toolkit) was born. Over the years it has grown into a much larger suite
of tools as the needs of the project have evolved. This paper will summarize the plug-in
features of Toolkit and highlight some of the ways that the use of plug-ins has allowed
Toolkit to evolve over time. In particular, we will focus on the use of plug-ins as a means to
maximize software flexibility when modifications were needed at the level of input, output
or processing.

P

The original goal of the Toolkit software was to provide a means of determining the data
quality, or completeness, of a particular set of data. As the ground system and the ground
team's role evolved, new functions were needed. These included the ability to packetize the
frames for transmission to the telemetry server, the ability to examine data within the
frames, and other utilities that have helped in troubleshooting various issues we have
encountered.

1 System Engineer, Chandra Ground Systems Engineering, 60 Garden St MS33 Cambridge MA, 02138

American Institute of Aeronautics and Astronautics
1

Toolkit was initially written to process TDM data, as Chandra's output format is TDM
with a small appended header to make it CCSDS compliant at the transport layer. DSN
then wraps each Chandra frame in an SFDU. Toolkit could still pretend that each SFDU
was a TDM frame due to its fixed nature. Later, the SFDU format changed slightly giving
us a reason to process the SFDU as it is truly defined. As Toolkit evolved it became
especially important to allow for changes in external interfaces, so it could process
differing types of data and in many different formats. These many changes in requirements
and functionality resulted in frequent modifications to the tool. We were constantly adding
sections and recompiling the tool. These frequent updates could cause errors as one
change sometimes affected other parts of the code. Further, every change to Toolkit
needed to be presented to the Flight Director's Board since it was a change to the main
tool, even for minor changes such as adding the option to tweak the output precision of a
displayed data point. The use of plug-ins has allowed for a more modular and efficient
approach to software modifications.

II. Architecture Overview
The Toolkit application is designed as a frame pipeline. The main routine receives an

input frame, then transfers the frame to downstream processing routines. Results of
processing routines are handled internally to the routine. Optional frame output, which
could be considered a variation on frame processing, can pass the entire frame out in one
of several different frame formats. Initially only hex/octal dump or binary file output were
supported, but later network interfaces with additional output formats were added, while
retaining all of the previously defined output formats.

Internally, Toolkit passes a frame structure, which consists of a set of descriptors
and a pointer to the binary data. The frame is mostly described by the information specified
in the configuration file. These frames are passed through each processing stage of the
pipeline. Typically a frame consists of an SFDU, however several other formats are
supported in most of the usual routines.

Globally, internal frame structures are mainly driven by buffer size, configuration
file parameters, and the database. As more and more changes were desired and the Toolkit
codebase grew, we decided to add the ability to dynamically load these functions into the
code on an as-needed basis. This was the origin of Toolkit’s plug-in interface.

By deciding to use plug-ins with Toolkit, we add only necessary components of the code
at any given time. In particular, the plug-ins that have been developed fall into one of
three groups: input, processing, or output. The plug-ins are defined by an external shared
object with a couple of well-defined functions. The shared objects are loaded via the
standard c dlfcn.h library. The requirements on the set of functions in the linked library are
as follows:

 The function named <function> (the assigned name) shall have the following
arguments (void *input, void **arguments, void **output). The function is
responsible for proper casting of the arguments.

 If it has an initialization function it must be named <function>_init and will take as
arguments (void *args, void **out). The function should allocate memory for and set
*out (usually a structure containing any information <function> needs operate
properly)

 If it has a cleanup function it must be named <function>_cleanup and will take as
arguments (void *args). Usually this should free any memory allocated by the other
two functions.

 The arguments pointer is stored internally and can only be allocated by an
initialization function.

American Institute of Aeronautics and Astronautics
2

The initialization function is called as soon as a plug-in is loaded. The cleanup function is
called when the function is unloades. It is not necessary for any code using the plug-in to
have to manage the calling of these functions. It is all handled in the dl_library functions.

Plug-ins are loaded in the order specified in the configuration file. Only one input and
output plug-in are allowed but any number of processing plug-ins may be loaded and
implemented serially. The plug-in functions are arranged in a priority queue. It is set up
such that if no priority is given all plug-ins have the same priority (99). Plug-ins with the
same priority are executed in the order that they are specified in the configuration file.
Processing plug-ins that are tied to a particular data point are linked to the structure
defining the data element.

A plug-in is defined in the configuration file as follows:
START_DYNAMIC_FUNCTION
 DYNAMIC_FUNCTION_LIBRARY ./cmrjcntb_plug-in.so
 DYNAMIC_FUNCTION cmrjcntb
 DYNAMIC_FUNCTION_ARGS 32 ## The initial count
 DYNAMIC_FUNCTION_PRIORITY 1
END_DYNAMIC_FUNCTION
The example here is for a processing plug-in however input and output plug-in definitions
are similar.

A library file (shared object) may contain many plug-ins as long as they come in sets
defined by the DYNAMIC_FUNCTION name. A library file is only opened once. If a library
file contains several sets of plug-ins subsequent loads only import the new functions
specified in DYNAMIC_FUNCTION. A processing plug-in can be specified for more than
one data point. For example a function may provide a certain calibration for both A and B
side equipment. If a function is already loaded it is assumed it is to be run for each event
but is not reloaded. If a function that has already been loaded needs to be reloaded with
different arguments a new function structure is built linking to the same symbols in the
library. This allows the same function to be run several times with different input. For
example, several data points have the same type of calibration applied with different
coefficients.

A plug-in is loaded into a structure like so:
typedef struct _DLfunction
{
 int priority;
 unsigned char flags;

 DLement *library;

 void *args;
 void (*init_function) (void *args, void **out);
 void (*run_function) (void *in, void **args, void **out);
 void (*clp_function) (void *args);

 struct _DLfunction *next;
} DLfunction;

The priority determines where in the queue the plug-in sorts. Plug-ins of the same priority
are chained together as a list in the order they were specified. The core software
determines if there is a plug-in associated with the current processing stage; if yes, it runs
the appropriate function.

American Institute of Aeronautics and Astronautics
3

Toolkit recognizes certain output values as valid. If the output is NULL the code assumes
that an error has occurred. The plug-in should also set errno appropriately and allow the
main application to interpret and deal with it appropriately. If the core code receives no
indication of why the error occurred then the main code attempts to exit cleanly.

Plug-ins can communicate with the main code and with other plug-ins in several ways
including signals, SysV shared memory, and IPC sockets. Signal handlers in the main code
are configured to receive certain standard signals from the functions and take certain
action. This is one way that external applications written to interact with the plug-ins can
send and receive messages. It's also one way that plug-ins can provide certain alternate
output options. In addition some plug-ins use signal catchers as global flags intended to
inform one plug-in of events in another. SysV style shared memory and semaphores can be
used to pass information between plug-ins, however it is more common to use the more
generic IPC sockets. These two IPC mechanisms are used to pass larger structures
between plug-ins. There is no feature built in to Toolkit to support generic data feedback.
These other mechanisms, allow the plug-ins to act in concert and gives one plug-in the
ability to control the operation of another.

III.Plug-in Types
Input plug-ins are configured to read new data types and pass out a frame structure. In

general the frame structure contains an array of binary data and a length. You can also
pass a self-defined data structure assuming that the processing routines on the other end
are provided knowledge of the structure as well. If an input plug-in is specified, it is called
with the current configuration parameters and then the calling routine expects that it
returns a pointer to data. That data is then passed to other routines in the architecture. For
internally-defined routines the data is usually either TDM or SFDU as defined in the
configuration file settings. In other words, it is globally expected that the data are binary
with some regularly defined structure. Frequently, the input plug-ins convert whatever
external data type they receive into an SFDU for the internal routines to process.

Processing plug-ins can be tied to a given point in telemetry or to the stream as a whole.
These plug-ins usually update certain information contained either in the data stream or
the ancillary structures, thus allowing downstream functions to process them. There are
two types of processing plug-ins whose difference is chiefly the triggering mechanism. A
general processing plug-in is called in priority order as the first step in the frame
processing segment of the pipeline. They are always passed the entire frame for analysis. A
processing plug-in tied to a particular data point is only called when processing that point.
It is typically passed the whole stream in addition to the data point being modified,
however it can be restricted to receive only a copy of the bits associated with the data
point.

Output plug-ins are crafted to allow the system to interface with other systems or with
users. Built-in output plug-ins include SFDU and TDM and two different internally defined
packets. Output functions actually handle the output themselves, so that the report writer
generates its own output file and writes the contents. Frequently, it is desired that the data
output can be easily imported into spreadsheets or plotting tools. Some of the newer
Toolkit plug-ins incorporate the ability to write out gnuplot scripts associated with the data
set, or can call gnuplot directly to just display a plot of the desired data. Output plug-ins
also allow the system to reformat the data and write it out to a file or to the network.

American Institute of Aeronautics and Astronautics
4

IV. Examples
SLE Data (Input Plug-in)
When Chandra was required to switch to an SLE interface with DSN, an input plug-in was
designed to handle SLE PDUs. An external application handles the protocol and passes the
PDUs to the plug-in for processing. SLE PDUs are transformed into an SFDU for internal
processing. The PDU fields, specifically earth receive time, antenna id, data link continuity,
and the DSN private annotation, are used to construct the SFDU header structure. This
functionality is maintained as part of the Toolkit package mostly for analysis purposes since
the external application that passes PDUs to Toolkit also handles forwarding data to the
downstream clients.

Incorporating STK predictive data into reports (Processing Plug-ins)
STK predictive data is useful for analyzing many problems, and incorporating this data

into Toolkit has proven handy when
troubleshooting. A plug-in was crafted to
retrieve data from the local instance of STK
using STK's Connect language. The plug-in
connects to STK and retrieves the predictive
data for the timespan desired in the output.
The processing plug-in associated with the
particular data point being analyzed selected
the appropriate STK data to return with the
actual received data. The output was then
received and plotted as part of the report.
Currently this functionality exists only as
report output but future versions of the
software will allow users to view these plots in real-time. The use of a plug-in to
incorporate STK predictive data into reports is presented as a detailed example in the
appendix.

Use of the system as a crude simulator (Processing Plug-ins)
A crude simulator was needed to take older Chandra data and modify it to reflect the
current spacecraft configuration and respond to some very basic commands. For the
details and the reasons please see my SpaceOps 2010 paper1. A general processing plug-in
was written to allow Toolkit to perform the basic configuration changes needed. A stand-
alone command processor was written to receive and process commands. Since a goal of
the exercise was to simulate an uplink communications problem, only a few commands
needed to be processed in detail, all others were simply "rejected on board”. A plug-in was
written and tied to each of the data points that needed to be individually updated by the
command software. The plug-ins and the command processor were tied together via IPC
sockets and shared memory segments. The command processor received a command and
decided what needed to be updated. It then flagged the plug-in handling the telemetry
point that needed to be updated. This plug-in would then read pertinent information off the
socket about how to update the point and modify the value in the telemetry stream. The
data stream was fed to a standard output module that writes the data out in the internal
system format. The result, from the point of view of the operators in the simulation, was
normal-feeling communications with a limping version of Chandra that was implemented
using the existing Toolkit tools and a minimal amount of additional code that was built
exclusively for this purpose.

Data Encoder (Output plug-in)
While performing recent testing with DSN, it became apparent that the spacecraft data
test files they had were not only out of date and of low quality but also contained data that
reflected the spacecraft in safe mode. Since receiving these test data at the control center
was problematic for several reasons, it was decided that Chandra would provide DSN with

American Institute of Aeronautics and Astronautics
5

Figure 1: Predicted vs. Actual Signal Strength

a new set of test files. These new files would be accurate, complete and well-defined
depictions of the spacecraft telemetry, and would reflect normal operation rather than safe
mode telemetry (which if accidentally released to the wider Chandra community during a
test could cause worry). In other words, we would know exactly what was represented in
the test file and could tell if something was different. To aid in generating the test data for
DSN, an output plug-in was constructed to extract the spacecraft frame from the SFDU,
then apply both Reed-Solomon and convolutional encoding. The files delivered to DSN were
indistinguishable from data sourced from the spacecraft.

V. Conclusion
Moving forward, several improvements to the use of plug-ins can be identified. One

such improvement would be the redesign of the core in C++, as this would allow C++
features such as constructors, destructors and overloaded functions to produce more
efficient code. This would also allow the use of Boost plug-in libraries to provide more
consistent implementation and use compared with individually-generated libraries.

The modular manner in which plug-ins can be implemented allows for minimal
disruption to core components, thus maximizing flexibility. Further, a plug-in architecture
allows users operating within the framework of an established software package, like
Toolkit, to more easily manipulate necessary components with minimal investment. In this
scenario, users would also be able to exchange code with relative ease. Plug-ins are a very
valuable but little used tool that allow for many changes in the core operation of a data
analysis pipeline. The use of plug-ins, while embraced by the software industry, remains
largely under-utilized within the space community.

American Institute of Aeronautics and Astronautics
6

Appendix A
Incorporating STK predictive data into reports.

Processing Plug-in Example
(Note: some of the code has been edited for brevity)

From the configuration file

The original data point:
START_DATA
 ID CARRIER_POWER_RCV
 TYPE FEEE
 << Data Point Info >>
END

The new data point to be retrieved from STK: It is tied to the actual received data and only
generates output when the original data point would generate output. $TCTKDS is a
system variable that points to the install location of the software.
START_DATA
 ID CARRIER_POWER_RCV_EXP
 TYPE TIEIN
 TIEIN_MSID CARRIER_POWER_RCV
 START_DYNAMIC_FUNCTION
 DYNAMIC_FUNCTION_LIBRARY $TCTKDS/lib/stk_rcv_sig_str.so
 DYNAMIC_FUNCTION stk_rcv_sig_str
 END_DYNAMIC_FUNCTION
END

The argument structure: In this particular case, it contains only the STK connect
information. I probably could have just used the connect structure as the argument,
however, it received its own structure in case additional parameters were needed.
typedef struct __STK_Rcv_Sig_Str_Data
{
 GSTK_Connect STK; // All the connection info from STK
} stk_rcv_sig_str_data;

The initialization function: It allocates the memory for the arguments and connects to the
STK server. It is important to note that in the initialization function it is important to write
the desired arguments out. If you want to retain those from the configuration file, they
must be rewritten on the output.
void stk_rcv_sig_str_init (void *read_args, void **write_args)
{
 stk_rcv_sig_str_data *srssd;

 // Allocate space for srssd
 srssd = malloc (sizeof (stk_rcv_sig_str_data));

 // Get the configuration information for the STK server and connect to it
 GSTK_Load (srssd->STK);
 srssd->STK.read_config ();
 srssd->STK.stkconnect ();

 // Put the structure as the args for the main function

American Institute of Aeronautics and Astronautics
7

 *write_args = (void *)srssd;
} // END stk_rcv_sig_str_init ()

The main function: This creates the data for the new data point. It retrieves the needed
data from the STK instance and calculates the signal strength. It then places that into the
well-known data point structure that downstream functions can use to manage data point
output.
void stk_rcv_sig_str (void *input, void **args, void **output)
{
 G_Frame *frame; // The input frame
 dat_pos_info *dpi; // The place to store the output value to pass to the downstream
functions
 stk_rcv_sig_str_data *srssd;
 Frame_Time ft; // The frame Time structure (CCSDS Time format)
 int site; // DSS ID
 char *sr, *att; // STK response for slant range and antenna angle
 float sig_str; // The calculated signal strength

 // Give the arguments their actual types
 frame = (G_Frame *)input;
 dpi = (dat_pos_info *)(*args);
 srssd = dpi->function->args;

 // Use built in functions to get the time stamp and site ID from the frame
 ft = Get_Frame_Time (frame);
 site = Get_Frame_Site (frame);

 // Retrieve the data from STK
 sr = srssd->STK.command (< Get slant range from site to antenna at the same time as
the frame data >);
 att = srssd->STK.command (< Get spacecraft antenna angle to site at the same time as
the frame data >);

 // Calculate expected signal strength
 dpi->value = < Calculate expected signal strength based on slant range and antenna
angle >;

 // Convert the signal strength into the data point structure
 dpi->value = f2c (sig_str);
} // END stk_rcv_sig_str ()

The cleanup function disconnects from STK and frees the memory the init function
allocated
void stk_rcv_sig_str_cleanup (void **args)
{
 stk_rcv_sig_str_data *srssd;
 srssd = (stk_rcv_sig_str_data *)(*args);

 srssd->STK.stkdisconnect ();
 free (srssd);
 *args = NULL;
} // END stk_rcv_sig_str_cleanup ()

American Institute of Aeronautics and Astronautics
8

Appendix B
Acronym List

API Application Programming Interface
CCSDS The Consultative Committee for Space Data Systems
DSN Deep Space Network
IPC Inter-Process Communication
PDU Protocol Data Units
SFDU Standard Formatted Data Unit
SLE Space Link Extension
STK Satellite ToolKit
SysV Unix System V
TDM Time-Division Multiplexing

Acknowledgments
I would like to thank Jeff Holmes of Northrop Grumman and the Chandra team at SAO,

specifically Adam Frye, for their support during the development of the tools and the
writing of this paper. This work was supported under NASA contract NAS8-03060.

References
1Leussis, G., Shropshire, D., Wright, G., and Holmes, J., Surprise Simulation: Managing an Anomaly Simulation Without

Participant Knowledge, SpaceOps 2010 Proceedings, Huntsville, AL, 2010

American Institute of Aeronautics and Astronautics
9

