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In today's space operations environment, processing 
requirements evolve rapidly. Changing data transport 
formats frequently requires significant alterations to 
ground processing software simply to get data into the 
system. Further, end users may desire output not 
envisioned by the systems designers. I will show how 
these problems can be solved by applying the concept of 
plug-ins. A plug-in is small software component that acts 
on the data in independent stages and can communicate 
with the system as a whole by passing signals, or API-
defined data structures called “messages”. A plug-in can 
also communicate with other plug-ins using either 
signals, messages, or their own shared structures. Plug-
ins utilize the system's API to either provide input to, or 
output from the system. They can access the entire data 
stream or be restricted to a subset. They can work in 
concert with the database or completely ignore the 
system's definitions to perform processing not previously 
thought necessary. 

I. Introduction
rior to launch, the Chandra Ground Operations Team decided it needed a way to 
analyze certain aspects of the telemetry  data stream.  As a result, the Telemetry 

Controller's Toolkit (Toolkit) was born. Over the years it has grown into a much larger suite 
of tools as the needs of the project have evolved.  This paper will summarize the plug-in 
features  of Toolkit and  highlight some of the ways that the use of plug-ins  has allowed 
Toolkit to evolve over time.  In particular, we will focus on the use of plug-ins as a means to 
maximize software flexibility when modifications were needed at the level of input, output 
or processing. 

P

The original goal of the Toolkit software was to provide a means of determining the data 
quality, or completeness, of a particular set of data. As the ground system and the ground 
team's role evolved, new functions were needed. These included the ability to packetize the 
frames for transmission to the telemetry server, the ability to examine data within the 
frames, and other utilities that have helped in troubleshooting various issues we have 
encountered.
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Toolkit was initially written to process TDM data, as Chandra's output format is TDM 
with a small appended header to make it CCSDS compliant at the transport layer. DSN 
then  wraps each Chandra  frame in an SFDU. Toolkit could still pretend that each  SFDU 
was a TDM frame due to its fixed nature. Later, the SFDU format changed slightly giving 
us  a  reason  to process the  SFDU as it is truly defined. As Toolkit evolved it became 
especially important to allow for changes in external interfaces, so it could process 
differing types of data and in many different formats.  These many changes in requirements 
and functionality resulted in frequent modifications to the tool. We were constantly adding 
sections and recompiling the tool. These frequent updates could  cause errors as one 
change sometimes affected other parts of the code.  Further, every change to Toolkit 
needed to be presented to the Flight Director's Board since it was a change to the main 
tool, even for minor changes such as adding the  option to tweak the output precision of a 
displayed data point. The use of plug-ins has allowed for a more modular and efficient 
approach to software modifications.  

II. Architecture Overview
The Toolkit application is  designed as a frame pipeline. The main routine receives an 

input frame, then transfers the frame to downstream processing routines. Results of 
processing routines are handled internally to the routine. Optional frame output, which 
could be considered a variation on frame processing, can pass the entire frame out in one 
of several different frame formats. Initially only hex/octal dump or binary file output were 
supported, but later network interfaces with additional output formats were added, while 
retaining all of the previously defined output formats.

Internally, Toolkit passes a frame structure, which consists of a set of descriptors 
and a pointer to the binary data. The frame is mostly described by the information specified 
in the configuration file. These frames are passed through each processing stage of the 
pipeline. Typically a frame consists of an SFDU, however several other formats are 
supported in most of the usual routines. 

Globally, internal frame structures are mainly driven by buffer size, configuration 
file parameters, and the database. As more and more changes were desired and the Toolkit 
codebase grew, we decided to add the ability to dynamically load these functions into the 
code on an as-needed basis. This was the origin of Toolkit’s plug-in interface. 

By deciding to use plug-ins with Toolkit, we add only necessary components of the code 
at any given time.  In particular, the plug-ins that have been developed fall into one of 
three groups: input, processing, or output.  The plug-ins are defined by an external shared 
object with a couple of well-defined functions. The shared objects are loaded via the 
standard c dlfcn.h library. The requirements on the set of functions in the linked library are 
as follows: 

 The function named <function> (the assigned name) shall have the following 
arguments (void *input, void **arguments, void **output). The function is 
responsible for proper casting of the arguments.

 If it has an initialization function it must be named <function>_init and will take as 
arguments (void *args, void **out). The function should allocate memory for and set 
*out (usually a structure containing any information <function> needs operate 
properly)  

 If it has a cleanup function it must be named <function>_cleanup and will take as 
arguments (void *args). Usually this should free any memory allocated by the other 
two functions.

 The arguments pointer is stored internally and can only be allocated by an 
initialization function.
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The initialization function is called as soon as a plug-in is loaded. The cleanup function is 
called when the function is unloades. It is not necessary for any code using the plug-in to 
have to manage the calling of these functions. It is all handled in the dl_library functions.

Plug-ins are loaded in the order specified in the configuration file. Only one input and 
output plug-in are allowed but any number of processing plug-ins may be loaded and 
implemented serially. The plug-in functions are arranged in a priority queue. It is set up 
such that if no priority is given all plug-ins have the same priority (99).  Plug-ins with the 
same priority are executed in the order that they are specified in the configuration file. 
Processing plug-ins that are tied to a particular data point are linked to the structure 
defining the data element.

A plug-in is defined in the configuration file as follows:
START_DYNAMIC_FUNCTION
  DYNAMIC_FUNCTION_LIBRARY  ./cmrjcntb_plug-in.so
  DYNAMIC_FUNCTION          cmrjcntb
  DYNAMIC_FUNCTION_ARGS     32         ## The initial count
  DYNAMIC_FUNCTION_PRIORITY 1
END_DYNAMIC_FUNCTION
The example here is for a processing plug-in however input and output plug-in definitions 
are similar.

A library file (shared object) may contain many plug-ins as long as they come in sets 
defined by the DYNAMIC_FUNCTION name. A library file is only opened once. If a library 
file contains several sets of plug-ins subsequent loads only import the new functions 
specified in DYNAMIC_FUNCTION. A processing plug-in can be specified for more than 
one data point. For example a function may provide a certain calibration for both A and B 
side equipment. If a function is already loaded it is assumed it is to be run for each event 
but is not reloaded. If a function that has already been loaded needs to be reloaded with 
different arguments a new function structure is built linking to the same symbols in the 
library. This allows the same function to be run several times with different input. For 
example, several data points have the same type of calibration applied with different 
coefficients. 

A plug-in is loaded into a structure like so: 
typedef struct _DLfunction
{
  int priority;
  unsigned char flags;
  
  DLement *library; 

  void *args;
  void (*init_function) (void *args, void **out); 
  void (*run_function)  (void *in, void **args, void **out);
  void (*clp_function)  (void *args);

  struct _DLfunction *next;
} DLfunction;

The priority determines where in the queue the plug-in sorts. Plug-ins of the same priority 
are chained together as a list in the order they were specified. The  core  software 
determines if there is a plug-in associated with the current processing stage; if yes, it runs 
the appropriate function.  
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Toolkit recognizes certain output values as valid. If the output is NULL the code assumes 
that an error has occurred. The plug-in should also set errno appropriately and allow the 
main application to interpret and deal with it appropriately. If the core code receives no 
indication of why the error occurred then the main code attempts to exit cleanly. 

Plug-ins can communicate with the main code and with other  plug-ins in  several  ways 
including signals, SysV shared memory, and IPC sockets.  Signal handlers in the main code 
are configured  to  receive certain standard signals  from the functions  and take certain 
action. This is one way that external applications written to interact with the plug-ins can 
send and receive messages. It's also one way that plug-ins can provide certain alternate 
output options. In addition some plug-ins use signal catchers as global flags intended to 
inform one plug-in of events in another. SysV style shared memory and semaphores can be 
used to pass information between plug-ins, however it is more common to use the more 
generic  IPC  sockets.  These  two  IPC  mechanisms  are  used  to  pass  larger  structures 
between plug-ins. There is no feature built in to Toolkit to support generic data feedback. 
These other mechanisms, allow the plug-ins to act in concert and gives one plug-in the 
ability to control the operation of another.

III.Plug-in Types
Input plug-ins are configured to read new data types and pass out a frame structure. In 

general the frame structure contains an array of binary data and a length. You can also 
pass a self-defined data structure assuming that the processing routines on the other end 
are provided knowledge of the structure as well. If an input plug-in is specified, it is called 
with the current configuration parameters and then the calling routine  expects that it 
returns a pointer to data. That data is then passed to other routines in the architecture. For 
internally-defined routines the data is usually either TDM or SFDU as defined in the 
configuration file settings. In other words, it is globally expected that the data are binary 
with some regularly defined structure. Frequently, the input plug-ins convert whatever 
external data type they receive into an SFDU for the internal routines to process.

Processing plug-ins can be tied to a given point in telemetry or to the stream as a whole. 
These plug-ins usually update certain information contained either in the data stream or 
the ancillary structures, thus allowing downstream functions to process them. There are 
two types of processing plug-ins whose difference is chiefly the triggering mechanism. A 
general processing plug-in is called in priority order as the first step in the frame 
processing segment of the pipeline. They are always passed the entire frame for analysis. A 
processing plug-in tied to a particular data point is only called when processing that point. 
It is typically passed the whole stream in addition to the data point being modified, 
however it can be restricted to receive only a copy of the bits associated with the data 
point. 

Output plug-ins are crafted to allow the system to interface with other systems or with 
users. Built-in output plug-ins include SFDU and TDM and two different internally defined 
packets. Output functions actually handle the output themselves, so that the report writer 
generates its own output file and writes the contents. Frequently, it is desired that the data 
output can be easily imported into spreadsheets or plotting tools.  Some of the newer 
Toolkit plug-ins incorporate the ability to write out gnuplot scripts associated with the data 
set, or can call gnuplot directly to just display a plot of the desired data. Output plug-ins 
also allow the system to reformat the data and write it out to a file or to the network.
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IV. Examples
SLE Data (Input Plug-in)
When Chandra was required to switch to an SLE interface with DSN, an input plug-in was 
designed to handle SLE PDUs. An external application handles the protocol and passes the 
PDUs to the plug-in for processing. SLE PDUs are transformed into an SFDU for internal 
processing. The PDU fields, specifically earth receive time, antenna id, data link continuity, 
and the DSN private annotation, are used to construct the SFDU header structure. This 
functionality is maintained as part of the Toolkit package mostly for analysis purposes since 
the external application that passes PDUs to Toolkit also handles forwarding data to the 
downstream clients.

Incorporating STK predictive data into reports (Processing Plug-ins)
STK predictive data is useful for analyzing many problems, and incorporating this data 

into Toolkit has proven handy when 
troubleshooting. A plug-in was crafted to 
retrieve data from the local instance of STK 
using STK's Connect language. The plug-in 
connects to STK and retrieves the predictive 
data for the timespan desired in the output. 
The processing plug-in associated with the 
particular data point being analyzed selected 
the appropriate STK data to return with the 
actual received data. The output was then 
received and plotted as part of the report. 
Currently this functionality exists only as 
report output but future versions of the 
software will allow users to view these plots in real-time. The use of a plug-in to 
incorporate STK predictive data into reports is presented as a detailed example in the 
appendix. 

Use of the system as a crude simulator (Processing Plug-ins)
A crude simulator was needed to take older Chandra data and modify it to reflect the 
current spacecraft configuration and respond to some very basic commands. For the 
details and the reasons please see my SpaceOps 2010 paper1. A general processing plug-in 
was written to allow Toolkit to perform the basic configuration changes needed. A stand-
alone command processor was written to receive and process commands. Since a goal of 
the exercise was to simulate an uplink communications problem, only a few commands 
needed to be processed in  detail, all others were simply "rejected on board”. A plug-in was 
written and tied to each of the data points that needed to be individually updated by the 
command software.  The plug-ins and the command processor were tied together via IPC 
sockets and shared memory segments. The command processor received a command and 
decided what needed to be updated. It then flagged the plug-in handling the telemetry 
point that needed to be updated. This plug-in would then read pertinent information off the 
socket about how to update the point and modify the value in the telemetry  stream. The 
data stream was fed to a standard output module that writes the data out in the internal 
system format. The result, from the point of view of the operators in the simulation, was 
normal-feeling communications with a limping version of Chandra that was implemented 
using the existing Toolkit tools and a minimal amount of additional code that was built 
exclusively for this purpose.

Data Encoder (Output plug-in)
While performing recent testing with DSN, it became apparent that the spacecraft data 
test files they had were not only out of date and of low quality but also contained data that 
reflected the spacecraft in safe mode.  Since receiving these test data at the control center 
was problematic for several reasons, it was decided that Chandra would provide DSN with 
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a new set of test files.  These new files would be accurate,  complete and well-defined 
depictions of the spacecraft telemetry, and would reflect normal operation rather than safe 
mode telemetry (which if  accidentally released to the wider Chandra community during a 
test could cause worry).   In other words, we would know exactly what was represented in 
the test file and could tell if something was different.  To aid in generating the test data for 
DSN, an output plug-in was constructed to extract the spacecraft frame from the SFDU, 
then apply both Reed-Solomon and convolutional encoding. The files delivered to DSN were 
indistinguishable from data sourced from the spacecraft.

V. Conclusion
Moving forward, several improvements to the use of plug-ins can be identified.  One 

such improvement would be the redesign of the core in C++, as this would allow C++ 
features such as constructors, destructors and overloaded functions to produce more 
efficient code.  This would also allow the use of Boost plug-in libraries to provide more 
consistent implementation and use compared with individually-generated libraries.  

The modular  manner  in  which  plug-ins  can  be  implemented  allows  for  minimal 
disruption to core components, thus maximizing flexibility. Further, a plug-in architecture 
allows  users  operating  within  the  framework  of  an  established  software  package,  like 
Toolkit, to more easily manipulate necessary components with minimal investment.  In this 
scenario, users would also be able to exchange code with relative ease. Plug-ins are a very 
valuable but little used tool that allow for many changes in the core operation of a data 
analysis pipeline.  The use of plug-ins, while embraced by the software industry, remains 
largely under-utilized within the space community.
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Appendix A
Incorporating STK predictive data into reports.

Processing Plug-in Example
(Note: some of the code has been edited for brevity)

From the configuration file

The original data point:
START_DATA 
  ID CARRIER_POWER_RCV
  TYPE FEEE 
  << Data Point Info >>
END

The new data point to be retrieved from STK: It is tied to the actual received data and only 
generates output when the original data point would generate output. $TCTKDS is a 
system variable that points to the install location of the software.
START_DATA
  ID CARRIER_POWER_RCV_EXP
  TYPE TIEIN
  TIEIN_MSID CARRIER_POWER_RCV
  START_DYNAMIC_FUNCTION
    DYNAMIC_FUNCTION_LIBRARY $TCTKDS/lib/stk_rcv_sig_str.so
    DYNAMIC_FUNCTION         stk_rcv_sig_str
  END_DYNAMIC_FUNCTION
END

The argument structure: In this particular case, it contains only the STK connect 
information. I probably could have just used the connect structure as the argument, 
however, it received its own structure in case additional parameters were needed.
typedef struct __STK_Rcv_Sig_Str_Data
{
  GSTK_Connect STK; // All the connection info from STK
} stk_rcv_sig_str_data;

The initialization function: It allocates the memory for the arguments and connects to the 
STK server.  It is important to note that in the initialization function it is important to write 
the desired arguments out. If you want to retain those from the configuration file, they 
must be rewritten on the output.
void stk_rcv_sig_str_init (void *read_args, void **write_args)
{
  stk_rcv_sig_str_data *srssd;
  
  // Allocate space for srssd
  srssd = malloc (sizeof (stk_rcv_sig_str_data));

  // Get the configuration information for the STK server and connect to it
  GSTK_Load (srssd->STK);
  srssd->STK.read_config ();
  srssd->STK.stkconnect ();

  // Put the structure as the args for the main function
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  *write_args = (void *)srssd;
} // END stk_rcv_sig_str_init ()

The main function: This creates the data for the new data point. It retrieves the needed 
data from the STK instance and calculates the signal strength. It then places that into the 
well-known data point structure that downstream functions can use to manage data point 
output.
void stk_rcv_sig_str (void *input, void **args, void **output)
{
  G_Frame *frame;        // The input frame
  dat_pos_info *dpi;     // The place to store the output value to pass to the downstream 
functions
  stk_rcv_sig_str_data *srssd;  
  Frame_Time ft;         // The frame Time structure (CCSDS Time format)
  int site;              // DSS ID
  char *sr, *att;        // STK response for slant range and antenna angle
  float sig_str;         // The calculated signal strength

  // Give the arguments their actual types
  frame = (G_Frame *)input;
  dpi = (dat_pos_info *)(*args);
  srssd = dpi->function->args;

  // Use built in functions to get the time stamp and site ID from the frame
  ft = Get_Frame_Time (frame);
  site = Get_Frame_Site (frame);

  // Retrieve the data from STK
  sr = srssd->STK.command (< Get slant range from site to antenna at the same time as 
the frame data >);
  att = srssd->STK.command (< Get spacecraft antenna angle to site at the same time as 
the frame data >);

  // Calculate expected signal strength
  dpi->value = < Calculate expected signal strength based on slant range and antenna 
angle >;

  // Convert the signal strength into the data point structure
  dpi->value = f2c (sig_str);
} // END stk_rcv_sig_str () 

The cleanup function disconnects from STK and frees the memory the init function 
allocated
void stk_rcv_sig_str_cleanup (void **args)
{ 
  stk_rcv_sig_str_data *srssd;
  srssd = (stk_rcv_sig_str_data *)(*args);

  srssd->STK.stkdisconnect ();
  free (srssd);
  *args = NULL;
} // END stk_rcv_sig_str_cleanup () 
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Appendix B
Acronym List

API Application Programming Interface
CCSDS The Consultative Committee for Space Data Systems
DSN Deep Space Network
IPC Inter-Process Communication
PDU Protocol Data Units
SFDU Standard Formatted Data Unit
SLE Space Link Extension
STK Satellite ToolKit
SysV Unix System V
TDM Time-Division Multiplexing
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