
 
 
 

 

1 

Postellation: an Enhanced Delay-Tolerant Network (DTN) 
Implementation with Video Streaming and Automated 

Network Attachment 
 

Marc Blanchet, Simon Perreault and Jean-Philippe Dionne 
Viagénie, Québec, Québec, Canada 

Delay-Tolerant Networking (DTN) technology is based on the Bundle Protocol (BP). Inherent to the 
underlying store-and-forward architecture, current DTN implementations do not support real-time 

streaming of data such as video, especially in the context of using current IP-based applications and devices 
over a DTN network. Moreover, current DTN implementations are configured statically with a list of peers, 

preventing the construction of a dynamic network of devices to join the network. This paper describes 
Postellation (http://postellation.viagenie.ca), a highly portable DTN stack running on Windows, Linux, Mac 

OS X, as well as embedded real-time operating systems such as RTEMS. The paper shows the key differences 
of this implementation, such as how real-time streaming is achieved, as well as the automated network 
attachment mechanism. A use-case scenario is to have IP devices on board spacecraft with a DTN node 

carrying IP traffic from the spacecraft to the Earth through the DTN space network. A  DTN node on Earth 
then forwards the traffic to the IP network on Earth. 

I. Introduction 
ELAY-TOLERANT networking (DTN) is being proposed as the standard building-block for space networking, 
much like Internet Protocol (IP) has been the building block of the Internet. At the core of DTN is the Bundle 

Protocol[1] (BP), a store-and-forward protocol for generic data transfer. 
In the DTN architecture, bundles are sent, forwarded, and received by DTN nodes. The lower-layer technologies 

and protocols over which bundles are transported are called “convergence layers”. A minimal DTN stack includes a 
BP engine and at least one convergence layer. Convergence layers exist for sending bundles across the Internet (i.e., 
TCP and UDP convergence layers) as well as over various space transmission technologies (e.g. Saratoga, Licklider 
Transmission Protocol (LTP), CCSDS space link protocol). 

Routing is an important component of a DTN stack, however there is no single standard routing method or 
protocol. In the context of space networking, there are two main approaches: scheduled routing, where one knows in 
advance the positions and connectivity windows of DTN nodes, or dynamic routing using heuristics when such 
contact information is unavailable. 

The interface between the DTN stack and its applications, the API, is not currently standardized. 
Postellation (http://postellation.viagenie.ca) is a DTN stack with extra features aiming to enable fast application 
deployment by reusing tools and techniques that are currently deployed on the Internet. This lowers the cost of DTN 
adoption. 

 

II. Use of Existing Internet Protocols and Applications 
At the base of the Internet protocol suite is IP, the Internet Protocol. Transmission protocols such as TCP and 

UDP are carried in IP packets, being logically situated right on top of IP in the protocol stack. Application protocols, 
of which the most popular is undoubtedly the Hypertext Transfer Protocol (HTTP), come after, on top of the 
transport protocols. 

Custom applications are developed on top of the standard application protocols. For HTTP in particular, a 
myriad of frameworks, development tools, programming languages, XML dialects, JSON REST APIs, etc. are 
available off the shelf and are being used to build the Internet we know. Countless programmers are being trained 
with the Web technologies as primary focus. 

Making these Web technologies, or at least a subset of them, available over DTN would be an excellent way of 
“bootstrapping” DTN. It could have the potential to speed up adoption tremendously. 

D 



 
 
 

 

2 

III. Use of Web Technologies over DTN 
The cornerstone is HTTP. HTTP has request/response semantics that can be adapted very naturally to DTN[2]. 

Each HTTP request or response is encapsulated in bundles and sent over the DTN network.  Furthermore, a gateway 
between DTN and IP can act as an HTTP proxy. 

Carrying HTTP payload over DTN presents multiple challenges: 
 
• TCP Congestion Control 

TCP, the protocol over which HTTP is transported, contains mechanisms to cope with congestion on the 
Internet. Congestion control works by maintaining a window of in-flight, unacknowledged data between the 
sender and the receiver. This window automatically grows as data is acknowledged by the receiver and shrinks 
as data is retransmitted by the sender. This mechanism is not suited for very long delays such as those found in 
space. 
 
• Multiple Round-Trips 

Rendering a typical web page requires making multiple HTTP requests, often to different servers. Some 
HTTP responses may in turn trigger other HTTP requests. Overall, this means that the set of requests that are 
necessary to render a web page is partially ordered, making it impossible to completely parallelize all the 
requests. Thus, multiple round trips are necessary. With long delays it is imperative to minimize the number of 
round trips to maximize performance. 
 
• Time-out mechanism at the application layer 

Some current web applications are designed with assumptions on what is a "reasonable" time for user 
interaction. Adjustment at the application layer is required when time-out delays are shorter than the expected 
DTN link delay.  For instance, time-out mechanisms might be found in asynchronous javascript (Ajax) requests 
and in cookie based user sessions. Web applications built with DTN in mind need to relax those assumptions. 
We believe building DTN applications with web tools is not only feasible, but is a way to save on time, costs, 
and to minimize risk. 
 

Using a local web cache alongside Postellation's HTTP-to-DTN proxy, it is possible to achieve a user experience 
similar to the one achievable on Earth on the majority of the popular web sites of the Internet. In one demonstration 
of Postellation's capabilities, we simulated a link delay of 1.3 seconds, equivalent to the Earth-Moon propagation 
delay. 
 
DNS Resolution in a proxy context can be performed either in the client or server realm: 
 

• When using an explicitly-configured HTTP proxy (i.e. non-transparent mode), browsers do not perform DNS 
resolution. They expect the proxy to do the DNS resolution based on the contents of the Host HTTP header. In that 
case, Postellation performs DNS resolution in the server realm, by the connector, after the DTN network has been 
traversed, as part of regular TCP connection establishment to the HTTP server. 

 
• When using an implicitly-configured HTTP proxy (i.e. transparent mode), browsers will attempt to perform 

DNS resolution since, from their point of view, they are just establishing a regular connection directly to the HTTP 
server, unaware that a proxy is in the way. In this case it is necessary that a DNS infrastructure be made available in 
the client realm. 

 
File-based Operation 

 
File based operations are of significant importance in space missions.  A file transfer protocol over BP have 

relatively simple semantics if we suppose the underlying layers are responsible for, relaying, custody transfer and 
data unit reassembly.  Postellation provides two means to transfer files over DTN: 

• Two trivial applications (dtnsend and dtnrecv) transmit an encapsulated a file in a single bundle 
• Standard HTTP client and server combined with the HTTP-to-DTN proxy: The HTTP protocol in addition 

with the WEBDAV[3] extension  is comparable in functionalities to other file transfer protocol, such as the 
CSSDS File Delivery Protocol (CFDP) and FTP.   Files can be uploaded, downloaded and remote operation 
on the file system such as copy, move or delete can be performed. 



 
 
 

 

3 

IV. Video Streaming over DTN 
The Postellation HTTP-to-DTN proxy can be used to tunnel any protocol carried over TCP. TCP tunneling is 

performed by using the CONNECT method of the HTTP standard.  Streaming video or audio over the internet is 
characterized by a continuous flow of small packets. For this flow to continue over a DTN network, every packet 
must be encapsulated into an individual bundle. 

V. Connecting DTN Nodes 
Postellation nodes can connect to other DTN nodes via various convergence layers. Each node is named by an 

end-point-identifier (EID) and has a set of routes to reach other nodes.  Auto-configuration of nodes is possible 
when nodes are organized in a tree topology. Nodes can generate a unique EID derived from the EID of the 
upstream node followed by a unique identifier (UUID).  The structure of the EID reflects the relation with the 
upstream node and is used to determine the next-hop when forwarding bundles. 

VI. Implementation 
Postellation is written in C and complies with the ISO C99 standard.  Emphasis has been on minimizing the 

memory footprint and portability to real-time as well as non real-time operating systems.   
 
Postellation includes the Bundle Protocol daemon (bpd) and a suite of BP applications. Bpd and its applications 

run as separate processes and communication between components requires the BSD socket API and Libevent[4], an 
asynchronous event notification library.  BP applications interact with bpd through a common Application 
Programming Interface (API), making easy the design of new applications. 

 

 
 
 
The Postellation distribution includes the simple, de-facto standard applications dtnping, dtnpong, dtnsend, and 

dtnrecv. In addition, Postellation includes a DTN/HTTP proxy that is composed of two applications that use the 
Postellation API: the acceptor and the connector. They are named after the roles that they play in an HTTP 
connection establishment. When a regular HTTP client establishes a new HTTP connection, the acceptor accepts the 
connection over TCP. It converts the HTTP data into bundles that are sent over BP to the connector. Upon receiving 
the bundles, the connector will connect to the HTTP server over HTTP, completing the connection establishment 

BP Node 

BP APP BP APP BP APP 

BP Daemon 

Convergence Layer 

Routing 

BP API 

BP Node BP Node BP Node 

 

Figure 1: Postellation's components 



 
 
 

 

4 

process. From the point of view of the HTTP client and server, the acceptor/connector pair can be considered as an 
HTTP proxy. This proxy can work in transparent mode as well as non-transparent mode. 

 
Postellation has been implemented and tested on Linux, Mac OS X, OpenBSD, Windows, and RTEMS. 
 
The UDP and TCP convergence layers support both IPv4 and IPv6. A particular feature of this implementation is 

that UCP and TCP convergence layer link configurations do not specify a client or server role. Connection initiation 
is attempted from both sides and the first successful attempt "wins" while the other gets cancelled. In practice, on 
today's Internet, this facilitates mobility and Network Address Translator (NAT) traversal. 

 
Postellation automatically fragments and reassembles bundles that are larger than the convergence layer MTU*. 

For both TCP and UDP, path MTU discovery[5] is used to determine the effective MTU to a DTN peer. It is also 
possible to statically configure the MTU per peer. 

 
We extended the TCP convergence layer specification to include transport over a secure connection using 

Transport Layer Security (TLS). This non-standard but straightforward extension is very useful in delivering HTTP 
secure transactions. 
 

Interoperability testing 
 
Bundle forwarding between Postellation and nodes of other implementations has been tested. The applications 

used for sending and receiving bundles were dtnping and dtnpong. 
 
Two testing scenarios were used: 

• A Postellation node is used as an intermediary node between two nodes of foreign implementation 
(DTN2[6] and ION[7]). 

• A foreign (DTN2 or ION) node is used as an intermediary node between two Postellation nodes. 
 
No custody, report status or security features were used.  Routing between nodes was statically configured. 
 
Postellation is available for trial† and can be used to connect to a public DTN cloud, composed of nodes with 

artificial delays. The delay is introduced using netem, a Linux kernel module for emulating various connection 
characteristics. The UDP convergence layer is used between nodes where delay would make TCP impractical. 

 

                                                           
* MTU : Maximum Transfer Unit 
† http://postellation.viagenie.ca 



 
 
 

 

5 

 
Figure 2: Test environment with artifical delay and the HTTP-to-DTN proxy 
 

VII. Porting to Real-Time Operating System 
Postellation has been ported to RTEMS[8]. Since RTEMS does not have a notion of processes, multiple threads 

are used instead. For example, to run an HTTP proxy on RTEMS, one would need to run bpd in its own thread and 
either the acceptor or connector application in another. 

 
To give an idea of system requirements, the following memory footprint for an i386 target running bpd has been 

measured: 
• Binary image size: 508 kB (full RTEMS OS + Postellation software) 
• Heap size: 256 kB (bare minimum for enabling the RTEMS networking stack) 
• Stack size: 4 kB (bare minimum on the i386 architecture) 

This shows that Postellation makes it possible to deploy a full DTN stack in under one megabyte of memory. 

VIII. Conclusion 
Postellation is a lightweight and portable DTN (Bundle Protocol) implementation, featuring advanced HTTP and 

Video streaming capabilities, as well as automatic network attachments. It is available on various platforms such as 
Linux, MacOSX, Windows, OpenBSD and RTEMS. It can be found and tested at: http://postellation.viagenie.ca. 

References 
[1] Scott, K. and S. Burleigh, "Bundle Protocol Specification", RFC 5050, November 2007. 
[2] Jörg Ott, Dirk Kutscher: Bundling the Web: HTTP over DTN. WNEPT Workshop 2006. URL: 
http://www.netlab.tkk.fi/~jo/papers/2006-wnept-bundling-the-web.pdf 
[3] Dusseault, L., Ed., "HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV)", RFC 4918, 
June 2007. 
[4] Libevent, http://libevent.org 
[5] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191, November 1990. 
[6] DTN2 URL : http://sourceforge.net/projects/dtn/ 
[7] ION, Interplanetary Overlay Network, URL: http://sourceforge.net/projects/ion-dtn/ 

http://sourceforge.net/projects/ion-dtn/


 
 
 

 

6 

[8] RTEMS, Real-Time Executive for Multiprocessor Systems, http://rtems.com 
 
 
 
 
 


	Delay-Tolerant Networking (DTN) technology is based on the Bundle Protocol (BP). Inherent to the underlying store-and-forward architecture, current DTN implementations do not support real-time streaming of data such as video, especially in the context...
	I. Introduction
	II. Use of Existing Internet Protocols and Applications
	III. Use of Web Technologies over DTN
	IV. Video Streaming over DTN
	V. Connecting DTN Nodes
	VI. Implementation
	Interoperability testing

	VII. Porting to Real-Time Operating System
	VIII. Conclusion
	References

