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Taking Advantage of Uncertainty in Mission Planning 

Daniel X. Junker1 
LSE Space GmbH, Aregelsrieder Feld 22, 82234 Wessling, Germany 

Typical mission maneuver planning is taken up with designing the nominal burn 
sequence. For example, in a normal Geosynchronous Transfer Orbit (GTO), one is 
concerned with the effect on the trajectory from each burn, assuming all the previous have 
performed nominally. Principal effort is devoted to evaluating whether the resulting 
trajectory meets visibility, radio frequency interference requirements, solar constraints and 
so forth. Customarily one assumes that prevailing orbit determination uncertainty, engine 
performance and attitude control uncertainties are sufficiently small that problems 
encountered can be handled as they arise in flight.  This assumption is exacerbated by the 
underlying belief that coherently handling all the sources of uncertainty requires too much 
computing time, too many runs of too many alternate cases to make the effort worthwhile. 
This need not be the case. It is precisely because the prevailing uncertainties are reasonably 
small that differential techniques can be applied to address the ensemble of prevailing 
uncertainties in the same computation used to propagate the planned nominal trajectory. 
One can readily determine, for example, what range of post burn longitude drift rates to 
expect. Equally quickly one can decide how to adjust nominal targets to comfortably handle 
the expected range of orbit, attitude and burn uncertainty. This paper discusses the 
technique and applies it to trajectories seen in recent missions. It is shown how the result is a 
more robust burn plan at remarkably low cost in the development process. 

Nomenclature  

 

a,e,i,Ω,ω  = Keplerian Elements 
E, M, f = Keplerian Eccentric Anomaly, Mean Anomaly and True Anomaly 

 = Gravitational constant 
 = Cartesian position and velocity vectors 

 

rx,ry,rz  = Elements of the Cartesian position 

 

vx,vy,vz
 = Elements of the Cartesian velocity 

 = Orbital radius, the magnitude of the vector  

 

∆vr,∆vw  = Delta-V delivered along the orbit radial and orbit normal  

 

∆vs  = Delta-V delivered along the cross product of the orbit normal and the orbit radial 

I. Introduction 
HE main concern in maneuver planning is “what will happen if everything goes well?” The principal sources of 
uncertainty governing a plan are: engine performance, attitude control, and pre-maneuver trajectory uncertainty. 

Differential techniques can directly incorporate these into the main mission planning flow. That is, if you already 
have the means to propagate the orbit and make an ephemeris, you are just a few more computer subroutines away 
from computing the error bars on your plan.  The error bars will help you quickly access whether or not your burn 
plan is robust. 
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II. Initial Uncertainty 
Montenbruck and Gill describe the relationship between Cartesian and Keplerian uncertainties. For example, 

they describe how to compute the partials of the Cartesian position and velocity with respect to the semi-major axis. 
Their method starts with definition of the basis coordinates. 

Given 
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Then letting 

 

 

P = cos ω( )DΩ + sin ω( ) DN × DΩ( ) (3) 

 

 

Q = −sin ω( )DΩ + cos ω( ) DN × DΩ( ) (4) 

If we define the functions 

  (5)  

 

 

ypq = a 1− e2 cos E( ) (6) 
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Where 

 

 

r = a 1− ecos E( )( ) (9) 

Then the partial of the position and velocity vector with respect to the semi-major axis is given by 
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Montenbruck and Gill present similar equations for the partials of Cartesian position and velocity with respect to 

the remaining Keplerian elements. From these one can compose the complete matrix of partials.  
Given 

 

 

y ≡ rx ry rz vx vy vz( )T
 (12)     

 

 

α ≡ a e i Ω ω Μ( )T
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In their method, the inverse partial uses Poisson brackets. Given 

 

 

n =
µ
a

 (15) 

Then the Poisson bracket coefficients are 

 

 

PaM =
2

n a
 (16)      
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1− e( ) 1+ e( )

n a2e
 (17)    
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PiΩ = −
1

n a2 1− e2 sin i( )
 (20) 

The matrix representing the partial of the Keplerian elements with respect to the Cartesian elements is 

 

∂ α
∂ y

=

0 0 0 0 0 PaM

0 0 0 0 Peω PeM

0 0 0 PiΩ Piω 0
0 0 −PiΩ 0 0 0
0 −Peω −Piω 0 0 0

−PaM −PeM 0 0 0 0
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Finally, the Keplerian uncertainty for a given set of Keplerian elements and Cartesian uncertainty at a given 
epoch is computed by first computing the partials of the Keplerian with respect to the Cartesian elements using the 
Keplerian elements at the initial epoch 

 

 

A0 =
δα
dy t0

 (22) 

Then the Keplerian uncertainty is 
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III. Propagating Uncertainty To the Next Maneuver 
From the initial uncertainty, one can assemble the initial covariance matrix 

 

 

P0 =

σa.0
2 0 0 0 0 0

0 σe.0
2 0 0 0 0

0 0 σi.0
2 0 0 0

0 0 0 σΩ.0
2 0 0

0 0 0 0 σω .0
2 0

0 0 0 0 0 σM .0
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To propagate the covariance, we need first to define a state transition matrix. The matrix for a simple Keplerian 
propagation is 
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Φkep a,t0,t( )=

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

−
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Where  
 = Initial epoch 
 = Arbitrary epoch 

 
The state transition between two arbitrary is 

 

 

Φα t2,t1,t0( )= Φkep t2,t0( )Φkep t1,t0( )−1
 (26) 

The propagated covariance is  

 

 

P2 = Φα t2,t1,t0( )P1 Φα t2,t1,t0( )T
 (27) 

Where 
 = Covariance at time  
 = Covariance at time  

IV. Incorporating Maneuver Uncertainty 
Bate, Mueller and White describe the change in semi-major axis due to a small Delta-V 

 

 

∆a =
2esin f( )
n 1 − e2

∆vr +
2 a 1 − e2

n r
∆vs (28) 

The differential with respect to the components of Delta-V can be derived analytically 
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= 0 (31) 

Bate, Mueller and White supply similar expression of the change in each Keplerian element as a function of the 
Delta-V delivered in each direction. Using these, one can assemble the Jacobian 
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So, letting 
 

 =  Uncertainty in Delta V in the radial and normal directions 
 =  Uncertainty in Delta V in the direction formed by the cross product of the radial and normal vectors 

 
Then we can assemble the matrix 

 

 

W =

δ ∆vr( )2
0 0

0 δ ∆vs( )2
0

0 0 δ ∆vw( )2
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The covariance matrix will be increased by the uncertainty in the burn. After the burn, the covariance becomes 

 

 

Ppostburn = Ppreburn + HTW H  (34) 

V. Converting Uncertainty into Usable Information 
So far, all we’ve done is establish the evolution of the uncertainty in the Keplerian elements.  We must convert 

this into actionable information. For example, in Geosynchronous Transfer Orbits (GTO), one is interested in the 
Earth longitude and the orbital radius where each burn will take place. The longitude is given by 

 

 

λ t,R( ) = angle rx,ry( )− GHA t( ) (35) 

Where  
 

 = Greenwich Hour Angle at the time t 
 = Angle whose cosine is x and sine is y 

 
In this case, the position of the spacecraft can be expressed as a function of the Keplerian elements: 

 

 

R a,e,i,Ω,ω, f( )= r a,e, f( ) cos f( )P i,Ω,ω( )+ sin f( )Q i,Ω,ω( )( ) (36) 

One approach would be to analytically compute the differential relationship between longitude and the Keplerian 
elements. However it is worthwhile to try out numerical differentiation. For example, given 

 
 = Small differential variation in semi-major axis. Say about 5 meters. 

 
Then 
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∂ λ
∂ a

=
λ t,R a +δδa,e,i,Ω,ω, f( )( )− λ t,R a −δδa,e,i,Ω,ω, f( )( )

2δδa
 (37) 

One can construct similar expressions for the partial of the longitude with respect to each of the other Keplerian 
elements. From this, one can assemble the following differential matrix 
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In the case of the orbital radius, we have an analytic expression that is easy to differentiate, but whether one 
works this out our uses numerical differentiation, one still arrives at: 
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Ultimately, we want plots of Earth longitude vs. orbital radius. We will superimpose the uncertainty on these 
plots.  We need to have functions that compute little ellipsoids of uncertainty in longitude an orbit radius around 
each plotted value of nominal longitude and radius. The process starts with the matrix 
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Next one must compute the uncertainty associated with this matrix 

 

 

δ U =
∂U
∂ α

δ α  (41) 

Where 
 

 

δα ≡ δa δe δi δΩ δω δΜ( )T  = Column vector representing the uncertainty of each of the Keplerian elements 
 

The ellipsoids of uncertainty around each value of longitude and orbital radius do not describe a perfect circle. 
The uncertainty in longitude might for example be much bigger than that in orbital radius.  The uncertainty ellipsoid 
would be elliptical. More interesting, the axes of the ellipse need not be aligned with the axes of the plot. It can be 
tilted a little bit. To handle this, we need first to know where the long and short axes of the ellipse points. 
Since is a  matrix, there will be two eigen-values and two eigenvectors 

Given 
 

 

u1
eigen,u2

eigen  = Eigen-values of the matrix  

 

U1
eigen,U2

eigen = Corresponding eigen-vectors of the matrix  
 
Then the axes of the error ellipsoids are 

 

 

E1 = u1
eigen U1

eigen  (42)  
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E2 = u2
eigen U2

eigen  (43) 

Note that each is a vector with two elements 

 

 

E1 =
E1

r

E1
λ

 

 
 

 

 
  (44)  

 

 

E2 =
E2

r

E2
λ

 

 
 

 

 
  (45) 

For a given point along the ephemeris, use the Keplerian data to compute the orbital radius and longitude at that 
epoch. Also, compute the error eigen-axes and eigen-values at that point. To describe an ellipsoid about this point, 
one proceeds as follows 

Given 
 

 

rn,λn  = Orbital radius and Earth longitude at time  
 
Then if we want to describe an ellipsoid with points 360 deg apart then we could let, for example 
 
       

 

j = 0 360    and     

 

∆θ =1 
 
Letting 

  (46) 

Then the distance from  to each point on the ellipse is given by 

 

 

δrj = cos θ j( )E1
r + sin θ j( )E2

r  (47) 

 

 

δλ j = cos θ j( )E1
λ + sin θ j( )E2

λ  (48) 

VI. Example 
Consider a spacecraft in near-geosynchronous drift orbit. It is a few degrees West of station longitude. It is 

drifting toward station at a few degrees per day. The plan is to execute a few burns to shape the eccentricity, arrest 
drift and arrive at station. Along the path to station, the spacecraft passes close to several operational spacecraft.  
There is an initial trajectory uncertainty, as well as uncertainty about the planned burns. This example investigates 
two questions. Will the trajectory veer too close to operational spacecraft?  Will the spacecraft arrive at station 
longitude or will it miss? 

A. Initial Trajectory and Preliminary Plan 
The initial trajectory that we’ll use for this example is as follows 
 

Table 1. Initial State Vector 
Parameter Value  Parameter Value 
Epoch 2010/07/29 08:15:00.000   (deg) 329.9011 

 (km) 42083.2515   (deg) 182.4479 
 0.002   (deg) 7.7736 
 (deg) 0.0425   (deg) 89.4958 
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The uncertainty in these elements happens to be expressed in Cartesian coordinates.  Note that while these are 3 

sigma values, it is a matter of taste; if one uses 3 sigma inputs, one obtains 3 sigma outputs. 
 

Table 2. Initial State Vector Uncertainty  
Parameter Value  Parameter Value 

X Position Uncertainty (m) 400  X Velocity Uncertainty (m/s) 0.04 
Y Position Uncertainty (m) 400  Y Velocity Uncertainty (m/s) 0.04 
Z Position Uncertainty (m) 400  Z Velocity Uncertainty (m/s) 0.04 

  
The timing and size of the planned burns is as follows: 
 

Table 3. Preliminary Burn Plan 

Epoch Event 
Tangential Delta 

V (m/s) 
Normal Delta V 

(m/s) 
Radial Delta V 

(m/s) 
2010/08/01 00:15:00.000 BURN 1 0.9 -0.045 0 

2010/08/02 19:00:00.000 BURN 2 2.2 -0.115 0 
    
The uncertainty associated with each burn is: 
 

Table 4. Preliminary Burn Plan Uncertainty 
Tangential Delta 

V Uncertainty 
Normal Delta V 

Uncertainty 
Radial Delta V 

Uncertainty 
1% 1% 5% 

B. Analysis of the Preliminary Plan 
Now we can apply the techniques under discussion.  First, convert the initial trajectory uncertainty from 

Cartesian to the corresponding uncertainty in the Keplerian elements: 
 

Table 5. Keplerian Trajectory Uncertainty 
Uncertainty Value  Uncertainty Value 

 (km) 1.886851   (deg) 0.545382 
 0.000041   (deg) 0.133874 
 (deg) 0.000827   (deg) 0.409915 

  
The nominal trajectory is an output of whatever propagator is currently in use, it is not computed by the 

techniques presented in this paper.  Figure 1 presents that trajectory in terms of the evolution longitude and the 
orbital radius.  Using the techniques described here, uncertainty ellipsoids have been drawn at regular intervals 
along that trajectory.  
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Figure 1. Preliminary Plan  
 

Figure 1 shows that while the nominal trajectory arrives inside the box, portions of the uncertainty fall outside 
target.  This demonstrates it is not quite time to commit to this burn plan. Fortunately, the same plot presents the 
means to address the problem: the uncertainty in the trajectory leading up to the first burn is still quite high. This 
must be hammered down.  However, this plot was generated some days before the coming burn.  There is time to 
improve the determination of the orbit and re-design the burns.   

C. Updated Trajectory and Re-planning 
Two days later, more tracking data has been collected.  Routine orbit determination shows that the trajectory has 

slightly changed. 
Table 6. Improved Trajectory 

Parameter Value  Parameter Value 
Epoch 2010/07/31 03:00:00.000   (deg) 340.5241 

 (km) 42083.6596   (deg) 169.7228 
 0.002   (deg) 294.5449 
 (deg) 0.044   (deg) 91.1593 

       
Also, one naturally has revised nominal burn plan to account for the slightly different nominal trajectory.   
 

Table 7. Improved Plan for Burns 1 and 2 

Epoch Event 
Tangential Delta V 

(m/s) 
Normal Delta V 

(m/s) 
Radial Delta V 

(m/s) 
2010/08/01 00:15:00.000 BURN 1 0.9 -0.045 0.483 

2010/08/02 19:00:00.000 BURN 2 2 -0.115 1.235 
   

Because of the additional tracking data, the quality of the orbit determination uncertainty is much improved. 
 

Table 8. Improved Cartesian Trajectory Uncertainty 
Parameter Value  Parameter Value 
X Position Uncertainty (m) 6  X Velocity Uncertainty (m/s) 0.00009 

Y Position Uncertainty (m) 4  Y Velocity Uncertainty (m/s) 0.00052 

Z Position Uncertainty (m) 4  Z Velocity Uncertainty (m/s) 0.00007 
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D. Analysis of the Updated Trajectory and re-plan 
Now we can again apply the techniques of this paper.  The corresponding uncertainty in the Keplerian elements 

is also substantially improved: 
 

Table 9. Improved Keplerian Trajectory Uncertainty 
Uncertainty Value  Uncertainty Value 

 (km) 0.007799   (deg) 0.003404 
 0   (deg) 0.005894 
 (deg) 0.000005   (deg) 0.002478 

        
Look at Figure 2.  The revised propagation still arrives in the target box.  Much more important however is that 

the uncertainty ellipsoids drawn around this trajectory are also within the box.  You are ready to commit to the first 
burn. 

 
 

Figure 2. Re-planning Prior to Burn 1 

E. Re-Plan Prior to Burn 2 
After the first burn has executed, more tracking data is accumulated and the trajectory is re-estimated 
 

Table 10. Pre-Burn 2 Trajectory 
Parameter Value  Parameter Value 
Epoch 2010/08/02 08:53:10.000   (deg) 350.2618 

 (km) 42109.9938   (deg) 147.129 
 0.0018   (deg) 40.1475 
 (deg) 0.0462   (deg) 93.4011 

       
Also, burn 2 is revised to account for the slightly different nominal trajectory and results of engine calibration.  
  

Table 11. Improved Plan for Burn 2 

Epoch Event 
Tangential Delta V 

(m/s) 
Normal Delta V 

(m/s) 
Radial Delta V 

(m/s) 
2010/08/02 19:00:00.000 BURN 2 2.05 -0.113 1.208 
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F. Analysis of the Uncertainty for the Revised Plan for Burn 2 
Now we can apply the techniques of this paper to the re-plan.  The Keplerian element uncertainty from orbit 

determination is shown in Table 12. 
 

Table 12. Trajectory Uncertainty Prior to Burn 2 
Uncertainty Value  Uncertainty Value 

 (km) 0.044308   (deg) 0 
 0.0000003   (deg) 0 
 (deg) 0.0000076   (deg) 0.000007 

        
The revised propagation now arrives well within the box: 
 

 
 

Figure 3. Orbit Determination Prior to Burn 2 
 
Figure 3 demonstrates that burn 2 is robust.  The entire trajectory and uncertainty is contained within the box.  

The spacecraft will make it to station. 

VII. Conclusion 
We have discussed a methodology that allows uncertainty to be incorporated into the mission planning process 

in a meaningful and immediate way. The technique uses differentials to relate uncertainties in trajectory, maneuver 
and attitude to corresponding uncertainties in target mission parameters.  Provided the input errors are reasonably 
small, computed output uncertainties will reflect the uncertainty in achieving mission targets. 
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