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IMIS 
Solutions for assessing instruments’ health from anywhere 
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Since the advent of mobile technologies (laptops, smartphones and tablets) as well as the 
worldwide deployment of broadband networks (3G, Wi-Fi hotspots), the demand for 
accessing the satellite operations centers from outside has increased. Until now, very few 
means to carry out this demand have been set-up at CNES. As part of the MSL mission 
(Mars Science Laboratory), one of the strong requirements of the CNES operations center 
for the ChemCam and SAM instruments (the French contributions to MSL instruments) 
was to enable users outside the operations center, but of course with sufficient privileges, to 
assess the instruments’ health. CNES then implemented new software solutions named IMIS 
(Instrument Monitoring Interactive Software) which provide all features necessary to 
monitor the payload instruments from anywhere. In addition to a desktop client application, 
IMIS also provides an Android application mainly designed for on-call operations. 

I. Introduction 
n the CNES payload operations and data centers, few operational means are currently available from outside the 
center. In most cases, only access to the catalog of products and downloads are possible outside CNES via a Web 

interface. The laboratories that develop a payload instrument have no way to remotely monitor the technological 
parameters of their instrument. Three reasons can explain this fact. Firstly, the distributed architecture and the 
network technologies are actually quite recent (early 1990s) on the scale of a satellite project. Then, the needs for 
remote access rise with the modification of working habits and with the wide use of the Internet in everyday life that 
did not exist a few years ago. Finally, the justified concerns for the information system security were an impediment 
to the development of distributed applications over the Internet. Indeed, confidentiality, data integrity, and 
availability which are key factors of any operational center, can be threatened by external accesses from 
uncontrolled environment. 

As part of the MSL mission, one of the strong requirements of the CNES operations center for the ChemCam 
and SAM instruments was to enable users outside the operations center, but of course with sufficient privileges, to 
assess the instruments health. Fortunately, thanks to political and technological changes in matter of security, some 
applications can now be available on the Internet provided that the sensitivity of the data that are transmitted and 
handled, allows their dissemination. This is specifically relevant for a scientific mission which is operated in 
collaboration with laboratories and thus requires openness to the Internet. 

New software called IMIS was thus developed to meet this requirement. IMIS is firstly used in the frame of the 
MSL and SSALTO projects but it can also be integrated in any CNES scientific payload data and control center. 
Moreover, due to the great success of mobile technologies (Smartphones and tablets) and the extended capabilities 
of broadband networks (3G and Wi-Fi hotspots), the idea of developing an IMIS client for Android platforms has 
emerged. This application named SmartMonitorer is dedicated to on-call operations allowing to remotely perform a 
first level analysis when an alarm is raised (because a telemetry parameter is for example out of range). 

After the presentation of the IMIS operational requirements declined for MSL and SSALTO missions and 
although for on-call operations (section 2), the IMIS functions and design are detailed in sections 3 and 4. 
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II. Operational requirements 

A. Generic Payload Control Center 
The ground segment typically consists of the following top‐level systems which can be distributed across 

various centers depending on the chosen ground segment architecture [ECSS-E-ST-70]: 
- Mission operations system; 
- Payload operations and data system; 
- Ground station system; 
- Ground communications system. 
The payload operations and data system (also called ‘payload control center’ here-after) is the center in charge of 

managing the on ground operations of the payload and data analysis. Whereas the satellite control center manages 
payload critical operations such as instrument switch on/off and interfaces with the satellite, other payload 
operations are under the responsibility of the payload ground system: 

- Payload operations analysis, preparation, planning and scheduling; 
- Payload data processing, archiving and delivery; 
- User services; 
- Performance analysis and reporting; 
- Algorithm tuning and development, verification and validation; 
- System maintenance. 
A significant number of the functionalities offered by a payload control center remains the same from one 

mission to the next1. In this context, CNES initiated the CMSG project which aims at listing and organizing these 
common functions to avoid the need to redefine them for each new mission. The objective is to optimize the 
technical specification and development phase by leaving engineers free to concentrate on the specific aspects of 
their mission. A functional architecture decomposed into three layers, was then proposed2: a data management layer, 
an application layer and a ground monitoring layer. In the application layer, a function dedicated to the payload 
health monitoring is identified. This function, as the other ones, must be seen as the addition of a recurrent part and a 
mission specific part. 

In the frame of the CMSG project, the use of generic and reusable components is also promoted to minimize the 
workload for developing a new payload ground segment and to capitalize the lessons learnt of other missions. 

The concomitant need of payload health monitoring for both MSL and SSALTO projects was the opportunity to 
develop a new generic software component that carries out this function. This software shall help operators, 
engineers and experts performing the daily monitoring of one or several instruments. To achieve this goal, the 
software shall automatically warn users when housekeeping telemetry parameters transgress a monitoring rule (like 
comparison to a threshold, difference with the previous value). The software shall also provide various data displays 
like a plot of a daily curve, an animated synoptic, etc. Finally, as generic software, it has to provide an extensible 
architecture allowing the implementation of mission specific requirements such as dedicated user graphical 
interfaces, specific input/output formats, etc.  

B. Mars Science Laboratory (MSL) 
Mars Science Laboratory (MSL) is a mission of NASA's Mars 

Exploration Program, long term effort of the red planet exploration 
by robots. MSL is a rover designed to assess if Mars has been, or is 
still, a habitable environment. Its main objectives are thus to 
determine whether life ever arose on Mars, to characterize the 
climate and geology of Mars and to prepare for human exploration. 

 
1. General presentation of the rover 
To fulfill this mission, the MSL rover, developed by the Jet 

Propulsion Laboratory, embeds various scientific instruments 
coming from a worldwide set of laboratories. France is involved in 
two of the ten instruments. CNES insures the prime contractorship 
for the French instrument contributions to MSL. 

The ChemCam (Chemistry Camera) instrument is jointly 
developed by LANL and IRAP with support of CNES. The primary 
objective of ChemCam is to determine the chemical composition of 

 
Figure 1. MSL rover 
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Martian rocks at distances of 1 to 7 meters. It analyzes by spectrometry a plasma light emitted by rocks after a laser 
shot. A remote micro-imager also provides images of the target. 

The SAM (Sample Analysis at Mars) instrument is a suite of 3 scientific units that will perform mineral and 
atmospheric analyses to detect a wide range of organic components coming from the atmosphere and the ground, 
from rocks constitutional gases, and search for carbon and other detected atoms isotopes, as well as noble gas 
isotopes. SAM is under the GSFC responsibility. One of the three units of SAM suite, the “Gas Chromatograph” 
(SAM-GC), is provided by LATMOS and LISA with support of CNES. 

There are two main phases identified for MSL instrument operations. During phase 1, the first 90 sols (about 
three months), all surface operations are co-located at JPL. ChemCam and SAM are operated by a mixed French and 
American team. The second phase then begins and will last for a minimum of two years. During this phase, 
operations are distributed with JPL still serving as a central hub: LANL and IRAP/CNES operate ChemCam on a 
shared schedule, and GSFC operate SAM suite with support of LATMOS/LISA/CNES. 

 
2. FIMOC operational requirements 
A dedicated Operation Center is developed and installed in CNES to facilitate the operations from France3. The 

name of this operation center is FIMOC (French Instruments on Mars Operation Center). FIMOC will enable 
engineers, technicians and French scientists from CNES and laboratories involved in MSL mission, to operate 
ChemCam and SAM-GC instruments on board the rover during its exploration mission of Gale Crater on Mars.  

For ChemCam, the operations are to analyze the every day scientific and housekeeping data and to prepare the 
work plan for the instrument that follows a very precise activities chronology with meetings in teleconference under 
JPL responsibility. In order to optimize the resources, the operations will be realized alternatively with the LANL by 
a period of about 18 days (half of the Earth / Mars time cycle). 

For SAM-GC, the operations will be 
performed depending on the samples collection. 
But when a sample will be analyzed by SAM, 
the operations will last several days and the 
technical and science teams would be 
mobilized during this time. 

In addition to the instrument supply and 
science production, each science team also 
provides support in the rover operations in 
collaboration with the JPL. The scientists are 
working remotely to the FIMOC and require 
remote access to the web server hosting the 
data products and the monitoring tool allowing 
to assess the instruments’ health. As the 
operations are daily performed, the scientists 
will access FIMOC from their office but also everywhere they go (conference, home, hotel, etc.) provided that an 
Internet connection is available. 

In FIMOC, the health monitoring function consists in: 
1) Displaying, in engineering and raw values, technologic parameters (temperature, current, voltage, etc.); 
2) Checking parameters values with regard to configurable thresholds; 
3) Displaying an extrapolation of parameters drifts; 
4) Displaying statistics (typically the min, max and mean values of a parameter); 
5) Writing reports concerning the behavior and the health of the instrument; 
6) Tracking the consumables (e.g. number of shots at certain distance). 
Because FIMOC is open to uncontrolled environment (i.e. Internet), security requirements also apply. In order to 

keep control on the risks taken and to avoid impacting partners or others missions when a security incident occur, a 
risk analysis has been conducted on FIMOC and the following requirements emerged: 

- all input/output data (client/server requests and data files) shall be checked in terms of semantics and syntax 
before any other processing; 

- Systems exposed to the Internet shall be hardened, segmented from each other and isolated by function 
(database, software application, …); 

- System access shall be limited to authenticated users with granted privileges and any authentication attempt 
shall be logged so that it is possible to trace the originator of any action; 

- Systems and software privileges and configurations shall be restricted to the strict minimum. 

 

Figure 2. Remote access to the FIMOC 
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C. SSALTO 
CNES contributes a great deal to ocean observation activities either by developing remote sensing systems 

(satellites, instruments) or by making data available to scientists. Among the various satellite techniques used for 
observing the oceans, altimetry is particularly important. The principle is to precisely measure the satellite altitude 
and then the distance between the satellite and the target surface. By calculating the difference between the two, the 
‘sea-surface height’ is obtained and can be used to deduce a vast amount of information about the ocean and its 

movements: ocean currents, temperature and salinity 
variations, tides, etc. Altimetry can also determine wave 
height and wind speed on the ocean, as well as surface 
height for lakes and rivers, information about the Earth 
gravity field, sea ice and polar ice cap topography. 

With systems such as Doris and GPS, which measure 
the satellite position extremely accurately, the sea-
surface height can be calculated to within just a few 
centimeters. Doris is also a terrestrial positioning system 
which can be used to rapidly determine the position 
(longitude, latitude and altitude) of any point on the 
Earth surface, to within a few centimeters. This lends 
itself to numerous geodesy and geophysics applications, 
such as studies of the movements of tectonic plates or 
the Earth poles. The Doris system was designed and 
developed by CNES, the IGN (the French National 
Geographical Institute) and the GRGS (the Space 
Geodesy Research Group). Doris instruments are flying 
on the Spot, Hélios and Pléiades satellites. Since the 
Topex/Poseidon mission ended, Doris has been a central 
component of current and future altimetry missions, with 
the Jason-1 to 3, Envisat, Cryosat-2, HY-2A, Saral, 
Sentinel-3, etc. 

As far as altimetry and Doris are concerned, station keeping operations, data quality assurance, product 
development and distribution are handled by SALP (CNES Altimetry and Precise Location Department). SALP is 
responsible for operating the in-flight altimetry and orbitography missions as well as for the development of the 
payload ground segment for upcoming missions. It operates in an international cooperation frame (NASA, ESA, 
EUMETSAT, NOAA, ISRO, NSOAS, etc.), with the permanent goal to satisfy a large set of users from scientists to 
operational users. 
 

1. SSALTO general description 
To achieve this goal, CNES has set-up a multi-missions payload control center named SSALTO (payload ground 

segment for altimetry, orbitography and precise location) which operates the altimetry and Doris missions with the 
same set of tools. SSALTO performs the processing and distribution of scientific data, and archives the operational 
data. SSALTO gathers all the payload ground segment facilities required to: 

- Command and control the payload instruments (in particular the Doris instruments and the altimeters); 
- Control and manage the Doris beacons network; 
- Generate precise orbit determination files with different accuracies depending on the production time; 
- Generate level-2 altimeter products in near-real time (for operational use like marine meteorology) or offline 

(for ocean studies); 
- User services: archive and distribute products to the user community. 
The following missions are currently operated by SSALTO: Doris/Spot2, 4, and 5, Topex/Poséidon, Jason-1 and 

2, ENVISAT, CryoSat-2, HY-2A, and in the future SARAL/AltiKa, Sentinel-3A, and Jason-3. 
 
2. Payload health monitoring requirements in SSALTO 
With the integration of SARAL/AltiKa and HY-2A in SSALTO, the needs for instruments monitoring increased. 

Indeed, for these two missions which are respectively realized in cooperation with ISRO and NSOAS, the satellite 
control center is not located at CNES and thus the health monitoring of the payload instruments can not rely on the 
usual tools available in the CNES satellite control centers. 

Two groups of functions are required to monitor the Doris and altimeter instruments in SSALTO: 

 

Figure 3. Altimetry measurements principle 
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1) Routine monitoring which comprises: 
a. Automatic triggering of alarms after telemetry acquisition and monitoring rules checking; 
b. Telemetry parameters display with very synthetic information because of the number of missions 

and instruments to monitor; 
c. Computing of the distance to the reference ground track: the distance is plotted over a time period 

to verify if the maneuvers are correctly realized to insure that the ground track does not diverge; 
d. Generation of periodical reports. 

2) Expertise monitoring which comprises: 
a. Long term analysis of telemetry parameters; 
b. Location of particular events (such as commands to calibrate the altimeter instruments). 

D. On-call operations 
The CNES payload control centers are not manly operated 24/7. On-call operations are thus organized to prevent 

situations where on-board anomalies or ground system failures occur outside office hours. From a technical point of 
view, these on-call operations are only possible if an automated alarm system warns operators when it detects a 
problem. The current system at CNES is called SYGALE. 

In broad terms, SYGALE analyses the 
content of log files to trigger specific actions. 
SYGALE can read logs accessible locally or 
remotely and can also listen to a data stream 
transmitted over a TCP/IP socket connection. 
It then checks if any part of the logs, matches 
a configurable regular expression. Depending 
on the pattern found, SYGALE computes an 
alarm message and triggers specific actions 
for each alarm: sending out simple audio 
messages (using a speech synthesis unit), 
sending out voice messages by phone, e-mails 
or SMS or executing specific system actions 
(such as software restart). 

Even if SYGALE is secure, reliable and effective, it does not allow operators to query the whole context of the 
anomaly so that they can remotely identify if the alarm message deals with a real anomaly or is linked to an 
aberration value. For example, if the anomaly is related to a telemetry parameter that is out of range, it may be 
useful to display the trend of the parameter. 

SYGALE does not either allow operators to evaluate the urgency of the anomaly. Only information related to the 
parameter in the alarm is conveyed. There is no means to get a complete status of the payload and to become aware 
of orbital events. For instance, it is unnecessary for an operator to go to the payload control center in a hurry in the 
middle of the night if the next two orbits are blind and then the command to “repair” the anomaly can only be sent in 
6 hours. 

One of the objective of the IMIS with regard to on-call operations, is to provide a more comprehensive means to 
remotely perform the first level monitoring and diagnostics: plot the values of one or several parameters over a 
period of time, receive new alarms and eventually acknowledge them, create a message describing an alarm context 
with plots or free texts and send it to a third party (for example the expert of an on-board instrument), take note of 
the operations schedule, etc. 

The need for mobility must also be taken into account when defining a tool for on-call operations. Indeed, by 
definition, an operator that is on call should not have to stay at home with a computer physically connected to the 
Internet but he should remain contactable wherever he/she goes. For these reasons, an on-call application must be 
available on a mobile platform.  

Fortunately, recent technological improvements can now fulfill these needs. On the one hand, the mobile 
network offers the bandwidth to transfer large amount of data and not only voice communication. On the other hand, 
Smartphones have much greater resources to run applications that become rich: CPU (e.g. 1GHz) and RAM (up to 
512 KB or even 1024 KB on the most recent mobile platforms). Finally, new concepts of human – computer 
interaction (the now well-known ‘multitouch’ interaction first introduced on mobile devices by the Apple iPhone) 
provide new opportunities to develop applications that display content even if the screen is small (e.g. 800x480 
pixels on a 4 inches screen). 

 

Figure 4. SYGALE general description 
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III. IMIS solutions 
The Instrument Monitoring Interactive Software (IMIS) main goal is to allow the operator of a scientific payload 

control center to monitor the payload instruments’ health on a daily or weekly basis. The instruments’ health is 
monitored through the telemetry parameters retrieved from the satellite control center. In some cases, it is also 
relevant to correlate the monitoring of telemetry parameters with the commands that were executed on-board: for 
example, when monitoring a parameter indicating the instrument functioning mode, it may be interesting to know 
when commands modifying this mode were sent. Moreover, even if telemetry parameters and commands are 
temporal data, it may be useful to identify the position of the spacecraft where an event (execution of a command or 
alarm on a telemetry parameter) occurred. This provides a different outlook on the instrument(s) health thanks to the 
correlation of the monitored data with spatial information that can not be directly made with a ‘time-based’ 
monitoring (for example, analysis of the South Atlantic Anomaly effect on the instrument). Finally, for long-term 
monitoring, it may be more convenient to monitor the trend of a parameter instead of all its individual values. 
Indeed, it enables to highlight the global evolution of the parameter (for example, identification of parameter drifts) 
and to hide aberration values, high-frequency phenomenon, etc.  

For this purpose, IMIS software handles three main categories of data: 
1) Telemetry parameters comprising parameters measured on-board the spacecraft and ground-computed 

parameters: these parameters are the basis of the monitoring function of IMIS; 
2) Executed commands: this is the list of commands uplinked to the spacecraft and executed on-board; 
3) Ephemeris data enabling to correlate the temporal telemetry parameters with the spacecraft location. 
It is under the payload control center responsibility to regularly supply IMIS software with these data. In 

particular, the payload control center is responsible for decommuting the telemetry (comprising the computation of 
engineering values and significance statuses), identifying telemetry holes, processing ground-computed parameters 
and finally sending one or several files with all these data to IMIS. 

The data lifecycle in IMIS software is the following:  
- Data are acquired by IMIS software which computes the monitoring statuses and raises the corresponding 

alarms. Acquired data and additional computed information are stored by IMIS in an appropriate manner. 
- For trend analysis purpose, a sampling of the acquired telemetry parameters can be achieved. There are 

different ways to sample the parameters: the sampled values can be the minimum, maximum and/or mean 
values over the sampling period. 

- A purge process can be scheduled to erase the oldest telemetry parameters. The objective is to ensure disk 
capacity and high performance when requesting data (because there are less data to request). The activation 
policy of the purge process depends on the mission characteristics (in particular the volume of telemetry 
parameters produced during the mission lifetime). 

The design of IMIS was meant to allow users from anywhere (but of course with sufficient privileges) to access 
the monitoring information. It results in classical 3-tier architecture: the server acts as a data provider whereas the 
clients display the data in graphical user interfaces. Service oriented architecture is set-up to implement the client / 
server communication using the Java RMI technology.  

Two kinds of IMIS clients are available. The first one is a desktop application (compatible with Windows, 
MacOS and Linux operating systems) which communicates with the server through the Internet. The second one 
called SmartMonitorer is a light ‘IMIS’ client for any Android platform (smartphone or tablet) connected to the 
Internet via a Wi-Fi connection or the mobile broadband network (for example, 3G network). 

A. IMIS desktop application 
IMIS software is designed to provide users access to the monitoring data. It provides several functions. The first 

one is the ability to configure the monitoring by setting-up the list of parameters that shall be monitored, defining 
the monitoring rules applied on parameters (i.e. the condition when a parameter is in alarm or in nominal state) and 
configuring the trend-analysis and purge mechanism. 

The software then offers several ways to represent and analyze the data: 
- Line charts plot one or several parameters over a period of time. Line charts allow time series and XY series 

(i.e. plot of parameters in function of another). Among the interactive and useful functions available, the most 
relevant ones are the following. The tangent line and its corresponding slope can be displayed at any point 
selected on the chart. The polynomial regression can be computed and displayed. The occurrences of 
commands can be highlighted so that it is possible to correlate the evolution of a parameter with the 
execution of commands. 
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- Histogram charts plot the distribution of the values. It allows to identify aberration values, to verify how 
many values are near, for example, their upper bound, etc. It gives a statistical point of view. 

- Synoptic displays the values and statuses of a set of parameters at a given time. It is a kind of snapshot 
providing the status of a subsystem. 

- Dashboards enable users to get synthetic information about the monitoring state of a set of parameters. A 
dashboard displays their current values, their current monitoring states and an indicator of whether 
unacknowledged alarms related to the parameters have been raised. 

- Planisphere displays a user-friendly global map, including a basemap containing static geophysical elements 
(continents, inland seas …) and some geo-referenced objects (satellite ground tracks, station visibility circle). 
Along the satellite ground track, it is possible to highlight the alarm occurrences and to display the variation 
of the parameter values. 

In case a parameter transgresses a monitoring rule, an alarm is generated and displayed in a dedicated logbook. 
Once the alarm cause has been identified, users can acknowledge the alarm (pending they have rights to do so). 
Finally, users can annotate and comment all these displays with valuable information of their choice. If need be, the 
results of the users analysis can be assembled in a report to publish. 

The IMIS desktop application was designed to be highly interactive, intuitive and configurable. There are several 
links between displays so that it is possible to watch the same event with different point of view: for example, when 
plotting the values of a parameter, it is possible to display the histogram chart of the same parameter on the same 
period of time. 

B. SmartMonitorer 
SmartMonitorer is an application that runs on any Android compatible platforms whether a smartphone or a 

tablet. It communicates with IMIS to retrieve the information it displays.  

 

Figure 5. IMIS desktop application 
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SmartMonitorer is mainly designed 
for on-call operations and then only 
contains a subset of the IMIS 
functionalities. The most important 
function with regard to on-call 
operations is the management of alarms. 
Thanks to the native notification system 
available on Android, SmartMonitorer 
can warn users when a new alarm is 
detected. The phone (or tablet) vibrates 
and emits a beep until the user views the 
alarm. Users can then display any details 
about the alarm (start date, end date, 
telemetry parameter in alarm, monitoring 
rule that is transgressed, etc.). When the 
cause of the alarm is identified, users can 
acknowledge it. 

In order to help users analyzing the 
alarm, SmartMonitorer provides a very 
convenient and user-friendly function: 

the plot of telemetry parameters over a configurable period of time. Not only can users plot the parameter in alarm, 
but up to four parameters can be displayed simultaneously on the same graph or on separate graphs. The list of 
available parameters is defined in the satellite database that is retrieved from IMIS. 

Finally, thanks to the native SMS and mail applications, SmartMonitorer can send messages with valuable 
information about the alarm: text, alarm details, screenshots of charts. Other features are foreseen but not yet 
implemented such as the display of the satellite ground track using the Google Map application provided with the 
Android system. 

IV. Design 

A. IMIS client / server architecture 
The IMIS client / server architecture is a Service Oriented Architecture. It ensures flexibility (services are 

independent of each other) and adaptability to changes thanks to the clear separation between the business logic and 
the ‘services’ interface layer. New services can then be implemented to meet specific requirements of a space 
mission without strong modification of the IMIS architecture or impact on other missions. 

In IMIS software, the communication layer is implemented by a component named ‘channel’. The channel 
defines the services with their input and output data (i.e. the API of the communication layer). The channel also 
provides an implementation of the communication layer that is described here-after. 

Different modes of interactions between the clients and the server are implemented. With asynchronous 
services, the service invocation is not blocking. This interaction mode is extended to deal with operations such as 
‘Progress’ enabling to continuously receive the results as work progresses on the server side. Synchronous services 
are characterized by the client invoking a service and then waiting for a response to the request. Because the client 
suspends its own processing after making its service request, synchronous services are suited when the service can 
process the request in a short time or when a small amount of data is returned. Finally, a last interaction mode is 
implemented to manage notifications from the server to one or more clients. The clients first subscribe to one or 
several events. When such an event occurs, the server notifies the client. 

These three interaction modes highlight the exchange of data that are initiated by the client (synchronous and 
asynchronous calls) or by the server (asynchronous call-backs and notifications). However, the technical solution 
must also take into account the following security constraints: the link between the clients and the server shall be 
able to pass through firewalls that only allow HTTP connection and the communication shall be initiated by the 
client. 

As a consequence, the channel is implemented using RPC (Remote Procedure Call) paradigm with two 
transport-layer protocols:  

- Java RMI (Remote Method Invocation): this implementation is convenient for IMIS deployment in an 
Intranet that allows the transfer of Java serialized objects; 

 

Figure 6. SmartMonitorer Android application 
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- HTTP-Tunneling RMI: the Java serialized objects are encapsulated in an HTTP request / response so that 
they can be transferred over the Internet. 

The principle of the HTTP tunnel 
consists in inserting an HTTP relay to route 
the RMI traffic via HTTP POST requests. 
The relay is a Java Servlet container (e.g. 
Apache Tomcat) that receives RMI 
requests and transfers them to the RMI 
server. A variant of this approach is to 
integrate RMI services directly in the 
Servlet container in order to improve 
performance on the encoding and network 
traffic. 

Finally, because only the clients are 
able to initiate the communication, the notification mechanism used for example to notify clients when new alarms 
are raised, is the following: the client frequently queries the server to know if any new event has occurred. 

B. Client / server architecture for SmartMonitorer 
SmartMonitorer is an Android application written in Java. Note that in the Android platform, there is no Java 

Virtual Machine: Java classes are compiled into Dalvik executables and run on Dalvik which is a specialized virtual 
machine designed specifically for Android. Unfortunately, all the Java API is not supported by Dalvik, in particular 
Java RMI can not be used. 

Another transport layer has then been set-up to make the communication between SmartMonitorer and the IMIS 
server possible. The services are implemented using HTTP and the principles of REST (Representational State 
Transfer). REST is a style of software architecture for distributed systems in which all services are defined as 
resources that can be accessed via HTTP methods (GET, PUT, POST and DELETE). The resources are thus 
identified by their URI (which enables to access the service) and the internet media type of the data transferred (e.g. 
XML, JSON). SmartMonitorer uses the JSON format which is less verbose than XML. This is a very important 
criterion because data are transferred through the mobile network that has a limited bandwidth (in theory 2 Mbits/s, 
but in practice around 400 Kbits/s). 

Moreover, in REST architectures, the services are stateless between requests. It means that the services do not 
carry any session state on behalf of the clients that are not currently in the process of making requests. All 
information about the session state must then be transmitted each time a request is made. One example of this point 
in SmartMonitorer is the session ID that is provided when a user is connected (with its login / password). The 
session ID is first retrieved by calling the authentication service and then transferred as a parameter of all subsequent 
requests (such as the retrieval of telemetry values). 

Another point that is not directly related to REST architecture is the way SmartMonitorer is notified when new 
alarms occur. Even if Google provides a framework named Cloud to Device Messaging (C2DM) to achieve this 
goal, SmartMonitorer does not use it. On the one hand, for satellite on-call operations, CNES does not want to be 
dependent of a third-party that is not clearly committed to a certain level of quality of service. On the other hand, 
CNES does not want to provide any third-party with information about the monitoring and health status of the 
satellites it operates. The notification mechanism that is implemented is thus a frequent query of the server to know 
if any new alarm has raised. The frequency can be tuned to avoid a huge number of connections limiting the 
available bandwidth and the battery life. 

In concrete terms, the client / server architecture of SmartMonitorer simply adds a new layer to the architecture 
described in figure 7. This layer is 
named ‘IMIS gateway’. It is 
composed of several RESTful 
services that simply handle the 
HTTP requests of SmartMonitorer 
and invoke the RMI services. The 
HTTP parameters in JSON format 
are also converted in Java objects. 
Finally, the results provided by the 
RMI services are forwarded to 
SmartMonitorer in the JSON format. 

 

Figure 7. HTTP tunnelling 

 

Figure 8. SmartMonitorer client / server architecture 
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C. Technologies 
Java is the programming language selected for developing IMIS because of the IMIS distributed architecture 

and the complexity of the IMIS GUI. Java applications can run on any Java Virtual Machine regardless of the 
computer architecture. Java is also the language for developing on Android platform. Finally Java development 
environment offers a great number of APIs (Application Programming Interface), IDE (Integrated Development 
Environment), frameworks and a continuous integration environment. One particular API that is used in IMIS is 
Java RMI (Remote Method Invocation) which enables to create distributed Java technology-based applications, in 
which the methods of remote Java objects can be invoked from other Java virtual machines, possibly on different 
hosts. Java RMI is the technology used to implement the IMIS channel. 

PostgreSQL is the object-relational database management system used to store all persistent information of 
IMIS except telemetry parameters values which, for performance reasons, are stored in binary files using a CNES 
proprietary technology named “TelemetryTable”. The principle of the “TelemetryTable” is to store the telemetry 
covering a specified period (typically one day) in a binary file with an extensible time index. Each file is self 
sufficient in the sense that it includes a description of its own data dictionary necessary to read / write the data 
blocks. The advantages of this binary structure that is temporally indexed are its minimum disk space footprint (data 
are not encoded in ASCII) and the optimal performance for inserting and retrieving data on a time criterion. 

It remains to present the technology best suited to implement the GUI of IMIS desktop application. Swing comes 
to mind as this technology is an integral part of the standard Java API. Nevertheless there are interesting 
alternatives, including SWT (Standard Widget Toolkit) and more specifically the EclipseRCP technology (based on 
SWT and JFace). EclipseRCP technology enables developers to implement with a good productivity, highly 
interactive and user-friendly applications. Indeed, the Eclipse framework provides a very mature architecture with 
reusable components and standard user interactions (such as drag and drop, windows docking, online help, etc.). The 
architecture is based on plug-ins that can be made available gradually throughout the development phase. Moreover, 
as a generic tool, IMIS has to take into account the specificities of every mission it operates and the modular 
architecture of EclipseRCP allows to add or remove plug-ins depending on the user requirements. 

To illustrate the architecture based on reusable components, we can mention the integration of four components 
in the IMIS client: 

1) BIRT is an open source Eclipse-based reporting system that IMIS uses to produce health reports. 
2) CSS is an integrated control system based on the Eclipse environment (http://css.desy.de). IMIS uses CSS 

to display and animate synoptic. 
3) uDig is an open source desktop application framework built with EclipseRCP. The goal of uDig is to 

provide a complete Java solution for desktop GIS data access, editing, and viewing. uDig is used as a plug-
in in IMIS to display a map with the satellite ground tracks and stations. 

4) JFreeChart is a free Java chart library that makes it easy for developers to display professional quality 
charts in their applications. JFreeChart is compatible with both Swing and SWT making it possible to 
integrate into an EclipseRCP application. 

V. Conclusion 
IMIS development ended in November 2011. Since late 2011, IMIS has been deployed in the MSL payload 

control center and has been integrated into SSALTO. Operators, science teams, and experts from CNES and 
French/American laboratories involved in the MSL project have a very good feeling about the software. IMIS meet 
the requirements of two different missions (Earth observation and Mars exploration) that at a first glance are 
supposed to have distinct operational procedures to monitor the instruments. This was possible because IMIS was 
designed as generic software that provides the base functionalities and an extensible architecture. TARANIS and 
SWOM are the next missions that intend to use IMIS in their payload control centers4. 

Technologies and software design concepts are now mature and allow to implement distributed Web 
architecture. In terms of information system security, no specific difficulty was encountered. The lessons learnt are 
to consider upstream the security constraints. In most of cases it is sufficient to apply the state of the art in matter of 
security: network segmentation and isolation, system hardening, and application security (use of security guidelines 
and best practices from CNES and partners: authentication, traces and security logs, restricted privileges, 
input/output data checking, etc.). 

With regard to SmartMonitorer, it was a good opportunity to check the capabilities of mobile platforms to 
develop a professional application and to validate the operators’ interest in a mobile application that allows to 
remotely monitor the payload instruments. SmartMonitorer has raised a lot of interest and its use is now being 
considered for the MSL mission. SmartMonitorer offers new functionalities and possibilities for on-call operations 
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that have been requested by operators for a long time. However, as it is not currently used in an operational context, 
there is currently no lesson learnt about the real advantage of using such a tool.  Moreover, the deployment of 
SmartMonitorer requires further analyses: definition of security procedures relative to professional usage of 
Smartphones (for example: capability to remotely delete data and application when the device is stolen), 
modification of the operational procedures because the way on-call operations are realized, is modified with such an 
interactive tool that provides means to remotely analyze and acknowledge alarms, etc. 

As far as technical aspects are concerned, on the one hand all features necessary to the SmartMonitorer 
development were available and well-functioning on the Android platform. But on the other hand, it should be noted 
that the development faced a rapid evolution of the Android operating system (two major releases within 6 months). 
Moreover no mature chart API was found even though a beta version of a library named aFreeChart was used 
successfully and works pretty well. 

Appendix A 

Acronym List 
API Application Programming Interface 
ChemCam Chemistry Camera 
CNES Centre National d’Etudes Spatiales (French Space Agency) 
CMSG Centre de Mission Scientifique Générique (Generic Scientific Payload Control Center) 
DORIS Détermination d'Orbite et Radiopositionnement Intégré par Satellite 
ESA European Space Agency 
EUMETSAT EUropean METeorologic SATellites 
FIMOC French Instruments on Mars Operation Center 
GIS Geographic Information System 
GPS Global Positioning System 
GRGS Groupe de Recherche de Géodésie Spatiale 
GSFC Goddard Space Flight Center 
GUI Graphical User Interface 
HTTP HyperText Transfer Protocol 
IGN Institut national de l’information géographique et forestière 
IMIS Instrument Monitoring Interactive Software
IRAP Institut de Recherche en Astrophysique et Planétologie 
ISRO Indian Space Research Organisation 
JPL Jet Propulsion Laboratory 
JSON Java Script Object Notation 
LANL Los Alamos National Laboratory 
LATMOS Laboratoire Atmosphères, Milieux, Observations Spatiales 
LISA Laboratoire Interuniversitaire des Systèmes Atmosphériques 
MSL Mars Science Laboratory 
NASA National Aeronautics and Space Administration 
NOAA National Oceanic and Atmospheric Administration 
PI Principal Investigator 
REST REpresentational State Transfer 
RMI Remote Method Invocation 
RPC Remote Procedure Call 
SALP Service d'Altimétrie et de Localisation Précise 
SAM Sample Analysis at Mars 
SAM-GC Sample Analysis at Mars - Gas Chromatograph 
SMS Short Message Service 
SOA Service Oriented Architecture 
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SSALTO Segment Sol d’ALTimétrie, d’Orbitographie et de localisation précise 
SWT Standard Widget Toolkit 
NSOAS National Satellite Ocean Application Service 
XML eXtensible Markup Language 

Appendix B 

Glossary 

sol The term sol is used by planetary astronomers to refer to the duration of a solar 
day on Mars (source Wikipedia) 
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